CSE 326: Data Structures Binary Search Trees

Hal Perkins
Spring 2007
Lecture 10

4/17/2007

Tree Calculations

Recall: height is max number of edges from root to a leaf

Find the height of the tree...
runtime:

4/17/2007

3

Today’s Outline

- Quick Tree Review
- Binary Trees
- Dictionary ADT / Search ADT
- Binary Search Trees
- Reading: Weiss ch. 4

4/17/2007

Tree Calculations Example

More Recursive Tree Calculations:
 Tree Traversals

A traversal is an order for
visiting all the nodes of a tree

Three types:

- Pre-order: Root, left subtree, right subtree
- In-order: Left subtree, root, right subtree
- Post-order: Left subtree, right subtree, root 4/17/2007

(an expression tree)

Binary Trees

- Binary tree is
- a root
- left subtree (maybe empty)
- right subtree (maybe empty)
- Representation:

4/17/2007

7

Inorder Traversal
void traverse(BNode t) \{
if (t != NULL)
traverse (t.left);
process t.element; traverse (t.right);
\}
\}

4/17/2007
6

Binary Tree: Some Numbers!

For binary tree of height h :

- max \# of leaves:
- max \# of nodes:
- min \# of leaves:
- min \# of nodes:

4/17/2007

ADTs Seen So Far

- Stack
- Push
- Pop
- Queue
- Enqueue
- Dequeue

4/17/2007
Priority Queue

- Insert
- DeleteMin

Then there is decreaseKey...

11

The Dictionary ADT

- Data:
- a set of (key, value) pairs
- Operations:
- Insert (key, value)
- Find (key)
- Remove (key)

The Dictionary $A D T$ is also

4/17/2007 called the "Map ADT"

```
- perkins
    Hal Perkins
    OH: MW 3:40
    CSE 360
    marius
    Marius Nita,
    OH: Th 2:30
    3 rd floor breakout
    andy
    Andy Sun,
    OH:Tue 1:30
    CSE 002

\section*{A Modest Few Uses}
- Sets
- Dictionaries
- Networks : Router tables
- Operating systems : Page tables
- Compilers : Symbol tables

Probably the most widely used ADT!

4/17/2007

\section*{Binary Search Tree Data Structure}
- Structural property
- each node has \(\leq 2\) children
- result:
- storage is small
- operations are simple
- average depth is small
- Order property
- all keys in left subtree smaller than root's key
- all keys in right subtree larger than root's key
- result: easy to find any given key

What must I know about what I store?
4/17/2007


\section*{Implementations}
insert find
delete
- Unsorted Linked-list
- Unsorted array
- Sorted array

4/17/2007

\section*{Example and Counter-Example}


4/17/2007
16


\section*{Find in BST, Iterative}

\}
\}
Runtime:
4/17/2007
18


\section*{BuildTree for BST}
- Suppose keys \(1,2,3,4,5,6,7,8,9\) are inserted into an initially empty BST.

Runtime depends on the order!
- in given order
- in reverse order
- median first, then left median, right median, etc.

4/17/2007

\section*{Bonus: FindMin/FindMax}
- Find minimum
- Find maximum


\section*{Lazy Deletion}

\section*{Non-lazy Deletion}
- Removing an item disrupts the tree structure.
- Basic idea: find the node that is to be removed. Then "fix" the tree so that it is still a binary search tree.
- Three cases:
- node has no children (leaf node)
- node has one child
- node has two children


\section*{Deletion - The One Child Case}

Delete(15)


\section*{Deletion - The Two Child Case}

Idea: Replace the deleted node with a value guaranteed to be between the two child subtrees

\section*{Options:}
- succ from right subtree: findMin(t.right)
- pred from left subtree : findMax(t.left)

Now delete the original node containing succ or pred
What can we replace 5 with?

4/17/2007
- Leaf or one child case - easy!


\section*{Balanced BST}

\section*{Observation}
- BST: the shallower the better!
- For a BST with \(n\) nodes
- Average height is \(\mathrm{O}(\log n)\)
- Worst case height is \(\mathrm{O}(n)\)
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that
1. ensures depth is \(O(\log n) \quad\) - strong enough!
2. is easy to maintain - not too strong!

4/17/2007

\section*{Potential Balance Conditions}
1. Left and right subtrees of the root have equal number of nodes
2. Left and right subtrees of the root have equal height

\section*{The AVL Balance Condition}

Left and right subtrees of every node have equal heights differing by at most 1

Define: balance \((x)=\) height( \(x\). left - height( \((x . r i g h t)\)
AVL property: \(\mathbf{- 1} \leq \operatorname{balance}(x) \leq 1\), for every node \(x\)
- Ensures small depth
- Will prove this by showing that an AVL tree of height \(h\) must have a lot of (i.e. \(\mathrm{O}\left(2^{h}\right)\) ) nodes
- Easy to maintain
- Using single and double rotations

4/17/2007

\section*{The AVL Tree Data Structure}

Structural properties
1. Binary tree property
2. Balance property: balance of every node is between -1 and 1

Result:
Worst case depth is O( \(\log n\) )

Ordering property
- Same as for BST


4/17/2007
34


\section*{Proving Shallowness Bound}

```

