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CSE 326: Data Structures
B-Trees

Hal Perkins
Spring 2007

Lecture 14-15

B-Trees

Weiss Sec. 4.7
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CPU

(has registers)

Cache

Main Memory

Disk

TIme to access
(conservative)

2-10 ns

40-100 ns

a few 
milliseconds

(5-10 Million ns)

SRAM

8KB - 4MB

DRAM

up to 10GB

many GB

Cache

Main Memory

Disk

1 ns per instruction
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Trees so far

• BST

• AVL

• Splay



2

5

M-ary Search Tree

• Maximum branching factor of M
• Complete tree has height = 

# disk accesses for find:

Runtime of find:
6

Solution: B-Trees
• specialized M-ary search trees

• Each node has (up to) M-1 keys:
– subtree between two keys x and y contains

leaves with values v such that
x ≤ v < y 

• Pick branching factor M
such that each node 
takes one full 
{page, block}
of memory

3 7 12 21

x<3 3≤x<7 7≤x<12 12≤x<21 21≤x
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B-Trees

What makes them disk-friendly?

1. Many keys stored in a node
• All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

• The tree structure can be loaded into memory
irrespective of data object size

• Data actually resides in disk
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B-Tree: Example
B-Tree with M = 4 (# pointers in internal node)
and L = 4 (# data items in leaf)

1
AB

2
xG 3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

10 40

3 15 20 30 50

Note: All leaves at the same depth!Data objects, that I’ll 
ignore in slides
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B-Tree Properties ‡

– Data is stored at the leaves
– All leaves are at the same depth and contains between 

⎡L/2⎤ and L data items
– Internal nodes store up to M-1 keys
– Internal nodes have between ⎡M/2⎤ and M children
– Root (special case) has between 2 and M children (or 

root could be a leaf) 

‡These are technically B+-Trees 10

Example, Again

B-Tree with M = 4
and L = 4

1 2

3 5 6 9

10 11 12

15 17

20 25 26

30 32 33 36

40 42

50 60 70

10 40

3 15 20 30 50

(Only showing keys, but leaves also have data!)
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B-trees vs. AVL trees

Suppose we have 100 million items (100,000,000):

• Depth of AVL Tree

• Depth of B+ Tree with M = 128, L = 64
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Building a B-Tree

The empty 
B-Tree

M = 3 L = 2

3
Insert(3)

3 14
Insert(14)

Now, Insert(1)?
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Splitting the Root

And create
a new root

1 3 14

1 3 14

14

1 3 14
3 14

Insert(1)

Too many 
keys in a leaf!

So, split the leaf.

M = 3 L = 2
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Overflowing leaves

Insert(59)
14

1 3 14 59

14

1 3 14
Insert(26)

14

1 3

14 26 59

14 59

1 3 14 26 59

And add 
a new child

Too many 
keys in a leaf!

So, split the leaf.

M = 3 L = 2
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Propagating Splits

14 59

1 3 14 26 59

14 59

14 26 59

1 3 5

Insert(5)

5 14

14 26 591 3 5

59

5

1 3 5 14 26 59

59

14

Add new
child

Create a
new root

Split the leaf, but no space in parent!

So, split the node.

M = 3 L = 2
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Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with L+1 

items, overflow!
– Split the leaf into two nodes:

• original with  ⎡(L+1)/2⎤ items
• new one with ⎣(L+1)/2⎦ items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

3. If an internal node ends up 
with M+1 items, overflow!
– Split the node into two nodes:

• original with  ⎡(M+1)/2⎤ items
• new one with ⎣(M+1)/2⎦ items

– Add the new child to the parent
– If the parent ends up with M+1

items, overflow!

4. Split an overflowed root in two 
and hang the new nodes under 
a new rootThis makes the tree deeper!
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After More Routine Inserts

5

1 3 5 14 26 59

59

14

5

1 3 5 14 26 59 79

59 89

14

89

Insert(89)
Insert(79)

M = 3 L = 2
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Deletion

5

1 3 5 14 26 59 79

59 89

14

89

5

1 3 5 14 26 79

79 89

14

89

Delete(59)

What could go wrong?

1. Delete item from leaf
2. Update keys of ancestors if necessary

M = 3 L = 2
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Deletion and Adoption

5

1 3 5 14 26 79

79 89

14

89

Delete(5)
?

1 3 14 26 79

79 89

14

89

3

1 3 3 14 26 79

79 89

14

89

A leaf has too few keys!

So, borrow from a sibling

M = 3 L = 2
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Does Adoption Always Work?

• What if the sibling doesn’t have enough for you to 
borrow from?

e.g. you have ⎡L/2⎤-1 and sibling has ⎡L/2⎤ ?
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Deletion and Merging

3

1 3 14 26 79

79 89

14

89

Delete(3)
?

1 14 26 79

79 89

14

89

1 14 26 79

79 89

14

89

A leaf has too few keys!

And no sibling with surplus!

So, delete
the leaf

But now an internal node 
has too few subtrees!

M = 3 L = 2
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Adopt a
neighbor

1 14 26 79

79 89

14

89

14

1 14 26 79

89

79

89

Deletion with Propagation 
(More Adoption)

M = 3 L = 2
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Delete(1)
(adopt a
sibling)

14

1 14 26 79

89

79

89

A Bit More Adoption

26

14 26 79

89

79

89

M = 3 L = 2
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Delete(26)
26

14 26 79

89

79

89

Pulling out the Root

14 79

89

79

89

A leaf has too few keys!
And no sibling with surplus!

14 79

89

79

89

So, delete 
the leaf;
merge

A node has too few subtrees
and no neighbor with surplus!

14 79

79 89

89

Delete 
the node

But now the root
has just one subtree!

M = 3 L = 2
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Pulling out the Root (continued)

14 79

79 89

89

The root
has just one subtree!

14 79

79 89

89

Simply make
the one child
the new root!

M = 3 L = 2
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Deletion Algorithm

1. Remove the key from its leaf

2. If the leaf ends up with fewer 
than ⎡L/2⎤ items, underflow!
– Adopt data from a sibling; 

update the parent
– If adopting won’t work, delete 

node and merge with neighbor
– If the parent ends up with 

fewer than ⎡M/2⎤ items, 
underflow!
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Deletion Slide Two

3. If an internal node ends up with 
fewer than ⎡M/2⎤ items, underflow!
– Adopt from a neighbor;

update the parent
– If adoption won’t work,

merge with neighbor
– If the parent ends up with fewer than 

⎡M/2⎤ items, underflow!

4. If the root ends up with only one 
child, make the child the new root 
of the tree

This reduces the 
height of the tree!
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Thinking about B-Trees

• B-Tree insertion can cause (expensive) splitting and 
propagation

• B-Tree deletion can cause (cheap) adoption or 
(expensive) deletion, merging and propagation

• Propagation is rare if M and L are large   
(Why?)

• If M = L = 128, then a B-Tree of height 4 will 
store at least 30,000,000 items



8

29

Tree Names You Might Encounter

FYI:
– B-Trees with M = 3, L = x are called 2-3 trees

• Nodes can have 2 or 3 keys
– B-Trees with M = 4, L = x are called 2-3-4 trees

• Nodes can have 2, 3, or 4 keys


