

Trees so far

- BST
- AVL
- Splay

- Maximum branching factor of M
- Complete tree has height =
\# disk accesses for find:

Runtime of find:

B-Trees

What makes them disk-friendly?

1. Many keys stored in a node

- All brought to memory/cache in one access!

2. Internal nodes contain only keys;

Only leaf nodes contain keys and actual data

- The tree structure can be loaded into memory irrespective of data object size
- Data actually resides in disk

Solution: B-Trees

- specialized M-ary search trees
- Each node has (up to) M-1 keys:
- subtree between two keys x and y contains leaves with values v such that $x \leq v<y$
- Pick branching factor M such that each node takes one full \{page, block\}
 of memory

B-Tree Properties ${ }^{\ddagger}$

- Data is stored at the leaves
- All leaves are at the same depth and contains between $\lceil L / 2\rceil$ and L data items
- Internal nodes store up to M-1 keys
- Internal nodes have between $\lceil M / 2\rceil$ and M children
- Root (special case) has between 2 and \boldsymbol{M} children (or root could be a leaf)

B-trees vs. AVL trees

Suppose we have 100 million items $(100,000,000)$:

- Depth of AVL Tree
- Depth of $\mathrm{B}+$ Tree with $\mathrm{M}=128, \mathrm{~L}=64$

Building a B-Tree

Now, Insert(1)?

$m=3 L=2 \quad$ Splitting the Root

Insertion Algorithm

1. Insert the key in its leaf
2. If the leaf ends up with $\mathrm{L}+1$ items, overflow!

- Split the leaf into two nodes:
- original with $\lceil(L+1) / 2\rceil$ items
- new one with $\lfloor(L+1) / 2\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $\mathbf{M + 1}$ items, overflow!

This makes the tree deeper!
3. If an internal node ends up with M+1 items, overflow!

- Split the node into two nodes: - original with $\lceil(M+1) / 2\rceil$ items - new one with $\lfloor(M+1) / 2\rfloor$ items
- Add the new child to the parent
- If the parent ends up with $\boldsymbol{M + 1}$ items, overflow!

4. Split an overflowed root in two and hang the new nodes under a new root

Does Adoption Always Work?

- What if the sibling doesn't have enough for you to borrow from?
e.g. you have $\lceil L / 27-1$ and sibling has $\lceil L / 2\rceil$?

The root
has just one subtree！

Deletion Slide Two

3．If an internal node ends up with
fewer than $\lceil\mathbf{M} / \mathbf{2}\rceil$ items，underflow！
－Adopt from a neighbor； update the parent
－If adoption won’t work， merge with neighbor
－If the parent ends up with fewer than「 $M / 2\rceil$ items，underflow！

This reduces the height of the tree！
4．If the root ends up with only one child，make the child the new root of the tree

Deletion Algorithm

1．Remove the key from its leaf

2．If the leaf ends up with fewer than $\lceil L / 2\rceil$ items，underflow！
－Adopt data from a sibling； update the parent
－If adopting won’t work，delete node and merge with neighbor
－If the parent ends up with fewer than 「M／2〕items， underflow！

Thinking about B－Trees

－B－Tree insertion can cause（expensive）splitting and propagation
－B－Tree deletion can cause（cheap）adoption or （expensive）deletion，merging and propagation
－Propagation is rare if \boldsymbol{M} and \boldsymbol{L} are large （Why？）
－If $\boldsymbol{M}=\boldsymbol{L}=\mathbf{1 2 8}$ ，then a B－Tree of height 4 will store at least 30，000，000 items

Tree Names You Might Encounter

FYI:

- B-Trees with $\boldsymbol{M}=\mathbf{3 , L}=\mathbf{x}$ are called 2-3 trees
- Nodes can have 2 or 3 keys
- B-Trees with $\boldsymbol{M}=\mathbf{4 , L}=\mathbf{x}$ are called 2-3-4 trees
- Nodes can have 2, 3, or 4 keys

