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CSE 326: Data Structures
Hash Tables

Hal Perkins
Spring 2007
Lecture 16
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Dictionary Implementations So Far

Delete

Find

Insert

Splay 
(amortized)

AVLBSTSorted 
Array

Unsorted 
linked list
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Hash Tables
• Constant time accesses!
• A hash table is an array of some 

fixed size, usually a prime number.
• General idea:

key space (e.g., integers, strings)

…
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TableSize –1 

hash function:
h(K)

hash table
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Example
• key space = integers
• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94
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Another Example
• key space = integers
• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34
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Hash Functions
1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:
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Sample Hash Functions:

• key space = strings
• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize
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Collision Resolution

Collision: when two keys map to the same 
location in the hash table.  

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing, 

quadratic probing, double hashing)
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Separate Chaining

• Separate chaining: 
All keys that map to 
the same hash value 
are kept in a list (or 
“bucket”).
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Insert:
10
22
107
12
42
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Analysis of find
• Defn: The load factor, λ, of a hash table is 

the ratio:         ← no. of elements
← table size

For separate chaining, λ = average # of 
elements in a bucket

• Unsuccessful find:

• Successful find:

M
N
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How big should the hash table be?

• For Separate Chaining: 
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tableSize: Why Prime?
• Suppose

– data stored in hash table: 7160, 493, 60, 55, 321, 
900, 810

– tableSize = 10
data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11
data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends 
to have a pattern

Being a multiple of 
11 is usually not the 
pattern ☺
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Open Addressing
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• Linear Probing: 
after checking spot 
h(k), try spot 
h(k)+1, if that is 
full, try h(k)+2, 
then h(k)+3, etc.
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Terminology Alert!

“Open Hashing”
equals

“Separate Chaining”

“Closed Hashing”
equals

“Open Addressing”Weiss
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Linear Probing

f(i) = i

• Probe sequence:
0th probe =  h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 2) mod TableSize
. . .
ith probe = (h(k) + i) mod TableSize

16

Linear Probing – Clustering 

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster
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Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot
• Expected # of probes (for large table sizes)

– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2
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Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe =  h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize

Less likely 
to encounter 
Primary 
Clustering
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Quadratic Probing
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Quadratic Probing Example
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insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5But…
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Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will 
find an empty slot in size/2 probes or fewer.
– show for all 0 ≤ i,j ≤ size/2 and i ≠ j

(h(x) + i2) mod size ≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size
⇒ i2 mod size = j2 mod size
⇒ (i2 - j2) mod size = 0
⇒ [(i + j)(i - j)] mod size = 0

BUT size does not divide (i-j) or (i+j)
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Quadratic Probing: Properties
• For any λ < ½, quadratic probing will find an 

empty slot; for bigger λ, quadratic probing may
find a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are 
not bad

• But what about keys that hash to the same spot?
– Secondary Clustering!
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Quadratic Probing Works for λ < 1/2
• If HSize is prime then 
(h(x) + i2) mod HSize ≠ (h(x) + j2) mod HSize

for i ≠ j and 0 < i,j < HSize/2.
• Proof

(h(x) + i2) mod HSize = (h(x) + j2) mod HSize
(h(x) + i2) - (h(x) + j2) mod HSize = 0
(i2 - j2) mod HSize = 0
(i-j)(i+j) mod HSize = 0
⇒⇐ HSize does not divide (i-j) or (i+j) 
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Double Hashing
f(i) = i * g(k)

where g is a second hash function 

• Probe sequence:
0th probe =  h(k) mod TableSize
1th probe = (h(k) + g(k)) mod TableSize
2th probe = (h(k) + 2*g(k)) mod TableSize
3th probe = (h(k) + 3*g(k)) mod TableSize
. . .
ith probe = (h(k) + i*g(k)) mod TableSize
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Double Hashing Example
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h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes  1                   1                 1                 2                 1                 2
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Resolving Collisions with Double Hashing
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Insert these values into the hash table 
in this order.  Resolve any collisions 
with double hashing:
13
28
33
147
43

Hash Functions:
H(K) = K mod M
H2(K) = 1 + ((K/M) mod (M-1))
M =
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Idea: When the table gets too full, create a 
bigger table (usually 2x as large) and hash 
all the items from the original table into the 
new table.

• When to rehash?
– half full (λ = 0.5)
– when an insertion fails
– some other threshold

• Cost of rehashing?

Rehashing
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Java hashCode() Method

• Class Object defines a hashCode method
– Intent: returns a suitable hashcode for the object
– Result is arbitrary int; must scale to fit a hash 

table (e.g. obj.hashCode() % nBuckets)
– Used by collection classes like HashMap

• Classes should override with calculation 
appropriate for instances of the class
– Calculation should involve semantically 

“significant” fields of objects
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hashCode() and equals()

• To work right, particularly with collection 
classes like HashMap, hashCode() and 
equals() must obey this rule:

if a.equals(b) then it must be true that
a.hashCode() == b.hashCode()

– Why?
• Reverse is not required
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Hashing Summary

• Hashing is one of the most important data 
structures.

• Hashing has many applications where 
operations are limited to find, insert, and 
delete.

• Dynamic hash tables have good amortized 
complexity.


