
1

1

CSE 326: Data Structures
Hash Tables

Hal Perkins
Spring 2007
Lecture 16

2

Dictionary Implementations So Far

Delete

Find

Insert

Splay
(amortized)

AVLBSTSorted
Array

Unsorted
linked list

3

Hash Tables
• Constant time accesses!
• A hash table is an array of some

fixed size, usually a prime number.
• General idea:

key space (e.g., integers, strings)

…

0

TableSize –1

hash function:
h(K)

hash table

4

Example
• key space = integers
• TableSize = 10

• h(K) = K mod 10

• Insert: 7, 18, 41, 94

2
3

9
8
7
6
5
4

1
0

2

5

Another Example
• key space = integers
• TableSize = 6

• h(K) = K mod 6

• Insert: 7, 18, 41, 34

2
3

5
4

1
0

6

Hash Functions
1. simple/fast to compute,
2. Avoid collisions
3. have keys distributed evenly among cells.

Perfect Hash function:

7

Sample Hash Functions:

• key space = strings
• s = s0 s1 s2 … s k-1

1. h(s) = s0 mod TableSize

2. h(s) = mod TableSize

3. h(s) = mod TableSize

⎟
⎠

⎞
⎜
⎝

⎛ ∑
−

=

1

0

k

i
is

⎟
⎠

⎞
⎜
⎝

⎛
⋅∑

−

=

1

0

37
k

i

i
is

8

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

Two ways to resolve collisions:
1. Separate Chaining
2. Open Addressing (linear probing,

quadratic probing, double hashing)

3

9

Separate Chaining

• Separate chaining:
All keys that map to
the same hash value
are kept in a list (or
“bucket”).

2
3

9
8
7
6
5
4

1
0

Insert:
10
22
107
12
42

10

Analysis of find
• Defn: The load factor, λ, of a hash table is

the ratio: ← no. of elements
← table size

For separate chaining, λ = average # of
elements in a bucket

• Unsuccessful find:

• Successful find:

M
N

11

How big should the hash table be?

• For Separate Chaining:

12

tableSize: Why Prime?
• Suppose

– data stored in hash table: 7160, 493, 60, 55, 321,
900, 810

– tableSize = 10
data hashes to 0, 3, 0, 5, 1, 0, 0

– tableSize = 11
data hashes to 10, 9, 5, 0, 2, 9, 7

Real-life data tends
to have a pattern

Being a multiple of
11 is usually not the
pattern ☺

4

13

Open Addressing

2
3

9
8
7
6
5
4

1
0

Insert:
38
19
8
109
10

• Linear Probing:
after checking spot
h(k), try spot
h(k)+1, if that is
full, try h(k)+2,
then h(k)+3, etc.

14

Terminology Alert!

“Open Hashing”
equals

“Separate Chaining”

“Closed Hashing”
equals

“Open Addressing”Weiss

15

Linear Probing

f(i) = i

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 2) mod TableSize
. . .
ith probe = (h(k) + i) mod TableSize

16

Linear Probing – Clustering

[R. Sedgewick]

no collision

no collision
collision in small cluster

collision in large cluster

5

17

Load Factor in Linear Probing
• For any λ < 1, linear probing will find an empty slot
• Expected # of probes (for large table sizes)

– successful search:

– unsuccessful search:

• Linear probing suffers from primary clustering

• Performance quickly degrades for λ > 1/2

() ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+ 21
11

2
1

λ

()⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−

+
λ1

11
2
1

18

Quadratic Probing

f(i) = i2

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize
. . .
ith probe = (h(k) + i2) mod TableSize

Less likely
to encounter
Primary
Clustering

19

Quadratic Probing

2
3

9
8
7
6
5
4

1
0 Insert:

89
18
49
58
79

20

Quadratic Probing Example

76

3

2

1

0

6

5

4

insert(76)
76%7 = 6

insert(40)
40%7 = 5

insert(48)
48%7 = 6

insert(5)
5%7 = 5

insert(55)
55%7 = 6

insert(47)
47%7 = 5But…

6

21

Quadratic Probing:
Success guarantee for λ < ½

• If size is prime and λ < ½, then quadratic probing will
find an empty slot in size/2 probes or fewer.
– show for all 0 ≤ i,j ≤ size/2 and i ≠ j

(h(x) + i2) mod size ≠ (h(x) + j2) mod size

– by contradiction: suppose that for some i ≠ j:
(h(x) + i2) mod size = (h(x) + j2) mod size
⇒ i2 mod size = j2 mod size
⇒ (i2 - j2) mod size = 0
⇒ [(i + j)(i - j)] mod size = 0

BUT size does not divide (i-j) or (i+j)

22

Quadratic Probing: Properties
• For any λ < ½, quadratic probing will find an

empty slot; for bigger λ, quadratic probing may
find a slot

• Quadratic probing does not suffer from primary
clustering: keys hashing to the same area are
not bad

• But what about keys that hash to the same spot?
– Secondary Clustering!

23

Quadratic Probing Works for λ < 1/2
• If HSize is prime then
(h(x) + i2) mod HSize ≠ (h(x) + j2) mod HSize

for i ≠ j and 0 < i,j < HSize/2.
• Proof

(h(x) + i2) mod HSize = (h(x) + j2) mod HSize
(h(x) + i2) - (h(x) + j2) mod HSize = 0
(i2 - j2) mod HSize = 0
(i-j)(i+j) mod HSize = 0
⇒⇐ HSize does not divide (i-j) or (i+j)

24

Double Hashing
f(i) = i * g(k)

where g is a second hash function

• Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + g(k)) mod TableSize
2th probe = (h(k) + 2*g(k)) mod TableSize
3th probe = (h(k) + 3*g(k)) mod TableSize
. . .
ith probe = (h(k) + i*g(k)) mod TableSize

7

25

Double Hashing Example

0
1
2
3
4
5
6 76

76

0
1
2
3
4
5
6

93

76

93

0
1
2
3
4
5
6

93

40
76

40

0
1
2
3
4
5
6

47
93

40
76

47

0
1
2
3
4
5
6

47
93
10

40
76

10

0
1
2
3
4
5
6

47
93
10
55
40
76

55

h(k) = k mod 7 and g(k) = 5 – (k mod 5)

Probes 1 1 1 2 1 2
26

Resolving Collisions with Double Hashing

2
3

9
8
7
6
5
4

1
0

Insert these values into the hash table
in this order. Resolve any collisions
with double hashing:
13
28
33
147
43

Hash Functions:
H(K) = K mod M
H2(K) = 1 + ((K/M) mod (M-1))
M =

27

Idea: When the table gets too full, create a
bigger table (usually 2x as large) and hash
all the items from the original table into the
new table.

• When to rehash?
– half full (λ = 0.5)
– when an insertion fails
– some other threshold

• Cost of rehashing?

Rehashing

28

Java hashCode() Method

• Class Object defines a hashCode method
– Intent: returns a suitable hashcode for the object
– Result is arbitrary int; must scale to fit a hash

table (e.g. obj.hashCode() % nBuckets)
– Used by collection classes like HashMap

• Classes should override with calculation
appropriate for instances of the class
– Calculation should involve semantically

“significant” fields of objects

8

29

hashCode() and equals()

• To work right, particularly with collection
classes like HashMap, hashCode() and
equals() must obey this rule:

if a.equals(b) then it must be true that
a.hashCode() == b.hashCode()

– Why?
• Reverse is not required

30

Hashing Summary

• Hashing is one of the most important data
structures.

• Hashing has many applications where
operations are limited to find, insert, and
delete.

• Dynamic hash tables have good amortized
complexity.

