CSE 326: Data Structures Sorting

Hal Perkins
Spring 2007
Lecture 17-18

Insertion Sort: Idea

- At the $k^{\text {th }}$ step, put the $k^{\text {th }}$ input element in the correct place among the first k elements
- Result: After the $k^{\text {th }}$ step, the first k elements are sorted.

Selection Sort: idea

- Find the smallest element, put it $1^{\text {st }}$
- Find the next smallest element, put it $2^{\text {nd }}$
- Find the next smallest, put it $3^{\text {rd }}$
- And so on ...

Sorting: The Big Picture

Given n comparable elements in an array, sort them in an increasing (or decreasing) order.
$\left.\begin{array}{|c|c|cc|}\begin{array}{c}\text { Simple } \\ \text { algorithms: } \\ \mathrm{O}\left(n^{2}\right)\end{array} & \begin{array}{c}\text { Fancier } \\ \text { algorithms: } \\ \mathrm{O}(n \log n)\end{array} & \begin{array}{c}\text { Comparison } \\ \text { lower bound: } \\ \Omega(n \log n)\end{array} & \begin{array}{c}\text { Specialized } \\ \text { algorithms: } \\ \mathrm{O}(n)\end{array}\end{array} \begin{array}{c}\text { Handling } \\ \text { huge data } \\ \text { sets }\end{array}\right\}$

Runtime:

worst case

best case
average case

HeapSort:

Using Priority Queue ADT (heap)

$$
\begin{array}{ccc}
23 & 44 & 87 \\
13 & 18 & \\
& 801 & 27
\end{array}
$$

$8 \quad 13 \quad 18$
27

Shove all elements into a priority queue,
take them out smallest to largest.

Runtime:

Merge Sort: Complexity

The steps of QuickSort

QuickSort Example

-Choose the pivot as the median of three.
-Place the pivot and the largest at the right and the smallest at the left

- Move i to the right to be larger than pivot.
- Move j to the left to be smaller than pivot.
-Swap

QuickSort Example

12

Recursive Quicksort

Best case complexity

Quicksort(A[]: integer array, left,right : integer): \{ pivotindex : integer:
if left + CUTOFF \leq right then
pivot := median3(A, left, right);
pivotindex := Partition(A,left, right-1, pivot);
Quicksort(A, left, pivotindex - 1);
Quicksort(A, pivotindex + 1, right);
else
Insertionsort(A, left,right);
\}

Don't use quicksort for small arrays CUTOFF = 10 is reasonable

Features of Sorting Algorithms

- In-place
- Sorted items occupy the same space as the original items. (No copying required, only $\mathrm{O}(1)$ extra space if any.)

```
Your Turn
```

Sort Properties

Are the following: stable?

Insertion Sort?
Selection Sort?
MergeSort?
QuickSort?

Sort Properties

Stable

- Items in input with the same value end up in the same order as when they began.

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in $\mathrm{O}(\mathrm{N} \log \mathrm{N})$ best case running time
- Can we do any better?
- No, if the basic action is a comparison.

Sorting Model

- Recall our basic assumption: we can only compare two elements at a time
- we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
- Assume no duplicates
- How many possible orderings can you get?
- Example: a, b, c ($\mathrm{N}=3$)

Permutations

- How many possible orderings can you get?
- Example: a, b, c ($\mathrm{N}=3$)
- (a b c), (a c b), (b a c), (b c a), (c a b), (c ba)
-6 orderings $=3 \cdot 2 \cdot 1=3$! (ie, "3 factorial")
- All the possible permutations of a set of 3 elements
- For N elements
- N choices for the first position, ($\mathrm{N}-1$) choices for the second position, ..., (2) choices, 1 choice
$-\mathrm{N}(\mathrm{N}-1)(\mathrm{N}-2) \cdots(2)(1)=\mathrm{N}$! possible orderings

Decision Tree

```
a<b<c,b<c<a,
c<a<b,a<c<b,
b<a<c,c<b<a
```



```
The leaves contain all the possible orderings of \(a, b, c\)

\section*{Your Turn}

\section*{Lower bound on Height}
- A binary tree of height h has at most how many leaves?

L \(\square\)
- A binary tree with \(L\) leaves has height at least:
h \(\square\)
\(\square\)
- The decision tree has how many leaves: \(\square\)
- So the decision tree has height:
h \(\square\)

\section*{\(\log (N!)\) is \(\Omega(N \log N)\)}
\[
\begin{aligned}
& \log (N!)=\log (N \cdot(N-1) \cdot(N-2) \cdots(2) \cdot(1)) \\
& \underset{\text { select just the }}{ }=\log N+\log (N-1)+\log (N-2)+\cdots+\log 2+\log 1 \\
& \text { first N/2 terms }
\end{aligned}
\]
\[
\begin{aligned}
& \underbrace{\begin{array}{c}
\text { Cach of the selected } \\
\text { terms is } \geq \log N / 2) \\
C_{0}
\end{array} \frac{N}{2} \log \frac{N}{2}, ~} \\
& \geq \frac{N}{2}(\log N-\log 2)=\frac{N}{2} \log N-\frac{N}{2} \\
& =\Omega(N \log N)
\end{aligned}
\]

\section*{\(\Omega(\mathrm{N} \log \mathrm{N})\)}
- Run time of any comparison-based sorting algorithm is \(\Omega(\mathbf{N} \log \mathbf{N})\)
- Can we do better if we don't use comparisons?

\section*{BucketSort Complexity: \(\mathrm{O}(n+K)\)}
- Case \(1: K\) is a constant
- BinSort is linear time
- Case 2: \(K\) is variable
- Not simply linear time
- Case \(3: K\) is constant but large (e.g. \(2^{32}\) )
- ???

\section*{BucketSort (aka BinSort)}

If all values to be sorted are known to be between 1 and \(K\), create an array count of size \(K\), increment counts while traversing the input, and finally output the result.


\section*{Fixing impracticality: RadixSort}
- Radix = "The base of a number system"
- We'll use 10 for convenience, but could be anything
- Idea: BucketSort on each digit, least significant to most significant (lsd to msd)



BucketSort on next-higher digit:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}

Invariant: after k passes the low order k digits are sorted.
BucketSort on msd:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & \\
\hline 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\
\hline
\end{tabular}

\section*{Radixsort: Complexity}
- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
- RadixSort only good for large number of elements with relatively small values
- Hard on the cache compared to MergeSort/QuickSort \({ }^{33}\)

\section*{Internal versus External Sorting}

Need sorting algorithms that minimize disk/tape access time

External sorting - Basic Idea:
- Load chunk of data into RAM, sort, store this "run" on disk/tape
- Use the Merge routine from Mergesort to merge runs
- Repeat until you have only one run (one sorted chunk)
- Text gives some examples```

