CSE 326: Data Structures Sorting

Hal Perkins Spring 2007 Lecture 17-18

Sorting: The Big Picture Given *n* comparable elements in an array, sort them in an increasing (or decreasing) order. Specialized Simple Fancier Comparison Handling huge data algorithms: algorithms: lower bound: algorithms: $O(n^2)$ $O(n \log n)$ $\Omega(n \log n)$ O(n)sets Bucket sort Insertion sort Heap sort External

Radix sort

sorting

2

Insertion Sort: Idea

- At the k^{th} step, put the k^{th} input element in the correct place among the first k elements
- Result: After the kth step, the first k elements are sorted.

Runtime:

worst case : best case : average case :

3

Selection Sort: idea

- Find the smallest element, put it 1st
- Find the next smallest element, put it 2nd
- Find the next smallest, put it 3rd

Merge sort

Quick sort

• And so on ...

Selection sort

Bubble sort

Shell sort

Selection Sort: Code void SelectionSort (Array a[0..n-1]) { for (i=0, i=n; ++i) { j = Find index of smallest entry in a[i..n-1] Swap(a[i],a[j]) } } Runtime: worst case : best case : average case : 5

HeapSort: Using Priority Queue ADT (heap)

```
23 44 756
13 18 801 27
35 8 13 18 23 27
```

Shove all elements into a priority queue, take them out smallest to largest.

Runtime:

6

Merge Sort

"The 2-pointer method"

```
2. Recursively sort each half
3. Merge two halves together

Merge (al[1..n],a2[1..n])
i1=1, i2=1
While (i1<n, i2<n) {
    if (al[i1] < a2[i2]) {
        Next is al[i1]
        i1++
    } else {
        Next is a2[i2]
        i2++
    }
}
Now throw in the dregs... 7</pre>
```

MergeSort (Array [1..n])

1. Split Array in half

Merge Sort: Complexity

,

Recursive Quicksort

```
Quicksort(A[]: integer array, left,right : integer): {
  pivotindex : integer;
  if left + CUTOFF < right then
    pivot := median3(A,left,right);
    pivotindex := Partition(A,left,right-1,pivot);
    Quicksort(A, left, pivotindex - 1);
    Quicksort(A, pivotindex + 1, right);
  else
    Insertionsort(A,left,right);
}</pre>
```

Don't use quicksort for small arrays. CUTOFF = 10 is reasonable.

13

QuickSort: Best case complexity

14

QuickSort: Worst case complexity

15

QuickSort: Average case complexity

Turns out to be $O(n \log n)$

See Section 7.7.5 for an idea of the proof.

Don't need to know proof details for this course.

Features of Sorting Algorithms

- In-place
 - Sorted items occupy the same space as the original items. (No copying required, only O(1) extra space if any.)
- Stable
 - Items in input with the same value end up in the same order as when they began.

17

How fast can we sort?

- Heapsort, Mergesort, and Quicksort all run in O(N log N) best case running time
- Can we do any better?
- No, if the basic action is a comparison.

9

Your Turn

Sort Properties

Are the following:	stable?			in-place?		
Insertion Sort?	No	Yes	Can Be	No	Yes	
Selection Sort?	No	Yes	Can Be	No	Yes	
MergeSort?	No	Yes	Can Be	No	Yes	
QuickSort?	No	Yes	Can Be	No	Yes	

18

Sorting Model

- Recall our basic assumption: we can <u>only compare</u> two elements at a time
 - we can only reduce the possible solution space by half each time we make a comparison
- Suppose you are given N elements
 - Assume no duplicates
- How many possible orderings can you get?
 - Example: a, b, c (N = 3)

Permutations

- How many possible orderings can you get?
 - Example: a, b, c (N = 3)
 - (a b c), (a c b), (b a c), (b c a), (c a b), (c b a)
 - -6 orderings = 3.2.1 = 3! (ie, "3 factorial")
 - All the possible permutations of a set of 3 elements
- For N elements
 - N choices for the first position, (N-1) choices for the second position, ..., (2) choices, 1 choice
 - $N(N-1)(N-2)\cdots(2)(1) = N!$ possible orderings

21

Lower bound on Height • A binary tree of height h has at most how many leaves? L • A binary tree with L leaves has height at least: h • The decision tree has how many leaves: • So the decision tree has height: h 123

$\Omega(N \log N)$

- Run time of any comparison-based sorting algorithm is $\Omega(N \log N)$
- Can we do better if we don't use comparisons?

25

BucketSort (aka BinSort)

If all values to be sorted are *known* to be between 1 and *K*, create an array count of size *K*, **increment** counts while traversing the input, and finally output the result.

Example K=5. Input = (5,1,3,4,3,2,1,1,5,4,5)

count array		
1		
2		
3		
4		
5		

Running time to sort n items?

26

BucketSort Complexity: O(*n*+*K*)

- Case 1: *K* is a constant
 - BinSort is linear time
- Case 2: *K* is variable
 - Not simply linear time
- Case 3: *K* is constant but large (e.g. 2³²)
 - ???

27

Fixing impracticality: RadixSort

- Radix = "The base of a number system"
 - We'll use 10 for convenience, but could be anything
- <u>Idea</u>: BucketSort on each **digit**, least significant to most significant (lsd to msd)

Radixsort: Complexity

- How many passes?
- How much work per pass?
- Total time?
- Conclusion?
- In practice
 - RadixSort only good for large number of elements with relatively small values
 - Hard on the cache compared to MergeSort/QuickSort ³³

Internal versus External Sorting

- Need sorting algorithms that minimize disk/tape access time
- External sorting Basic Idea:
 - Load chunk of data into RAM, sort, store this "run" on disk/tape
 - Use the Merge routine from Mergesort to merge runs
 - Repeat until you have only one run (one sorted chunk)
 - Text gives some examples