CSE 326: Data Structures Minimum Spanning Trees

Hal Perkins Spring 2007 Lectures 22-23

Today's Outline

Minimum Spanning Tree

- 1. Prim's
- 2. Kruskal's

Reading: Weiss, Ch. 9

2

Minimum Spanning Trees

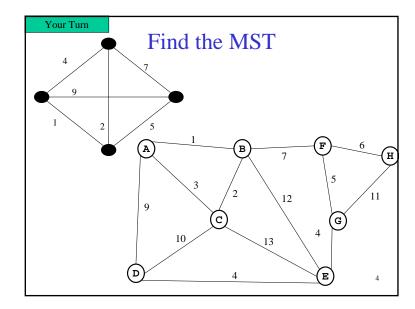
Given an undirected graph **G**=(**V**,**E**), find a graph **G**'=(**V**, **E**') such that:

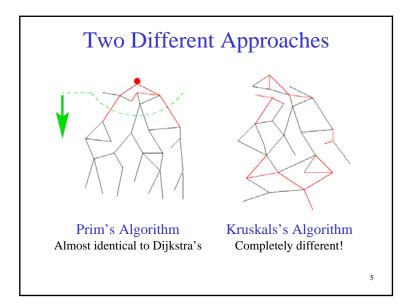
G' is a minimum

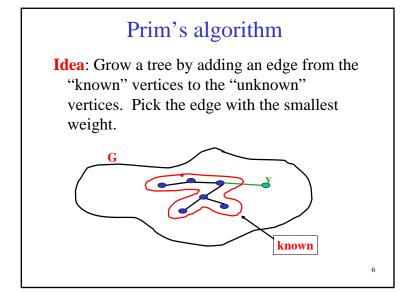
spanning tree.

- E' is a subset of E
- -|E'| = |V| 1
- G' is connected
- $-\sum_{(u,v)\in E'} c_{uv} \text{ is minimal}$

Applications: wiring a house, power grids, Internet connections







Prim's Algorithm for MST

A *node-based* greedy algorithm Builds MST by greedily adding nodes

- 1. Select a node to be the "root"
 - mark it as known
 - Update cost of all its neighbors
- 2. While there are unknown nodes left in the graph
 - a. Select an unknown <u>node *b*</u> with the smallest <u>cost</u> from some *known* node *a*
 - b. Mark b as known
 - c. Add (a, b) to MST
 - d. Update cost of all nodes adjacent to b

Prim's Algorithm Analysis

Running time:

Same as Dijkstra's: $O(|E| \log |V|)$

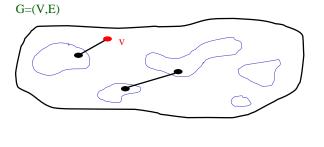
Correctness:

Proof is similar to Dijkstra's

9

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do not create a cycle. Pick an edge with the smallest weight.



10

Kruskal's Algorithm for MST

An *edge-based* greedy algorithm Builds MST by greedily adding edges

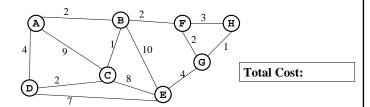
- 1. Initialize with
 - empty MST
 - · all vertices marked unconnected
 - all edges unmarked
- 2. While there are still unmarked edges
 - a. Pick the lowest cost edge (u,v) and mark it
 - If u and v are not already connected, add (u,v) to the MST and mark u and v as connected to each other

Doesn't it sound familiar?

11

Your Turn

Find MST using Kruskal's



- Now find the MST using Prim's method.
- Under what conditions will these methods give the same result?

3

Kruskal's Algorithm: Correctness

It clearly generates a spanning tree. Call it T_{κ} .

```
Suppose T_K is not minimum:
```

```
Pick another spanning tree T<sub>min</sub> with lower cost than T<sub>K</sub>
```

Pick the smallest edge $e_1 = (u, v)$ in T_K that is not in T_{min}

```
T_{\min} already has a path p in T_{\min} from u to v
```

 \Rightarrow Adding e_1 to T_{\min} will create a cycle in T_{\min}

Pick an edge e_2 in p that Kruskal's algorithm considered *after* adding e_1 (must exist: u and v unconnected when e_1 considered)

 $\Rightarrow \cos(e_2) \ge \cos(e_1)$

 \Rightarrow can replace e_2 with e_1 in T_{\min} without increasing cost!

Keep doing this until T_{min} is identical to T_{K}

 \Rightarrow T_K must also be minimal – contradiction!

14