CSE 326: Data Structures
 Dynamic Programming -
 Floyd/Warhsall Algorithm

Hal Perkins
Spring 2007
Lectures 26

Analysis

- Total running time for Dijkstra's:
$\mathrm{O}\left(|\mathrm{V}|^{2}+|\mathrm{E}|\right) \quad$ (linear scan)
$\mathrm{O}(|\mathrm{V}| \log |\mathrm{V}|+|\mathrm{E}| \log |\mathrm{V}|) \quad$ (heaps)

What if we want to find the shortest path from each point to ALL other points?

Single-Source Shortest Path

- Given a graph $G=(V, E)$ and a single distinguished vertex s, find the shortest weighted path from s to every other vertex in G.

All-Pairs Shortest Path:

- Find the shortest paths between all pairs of vertices in the graph.
- How?

Dynamic Programming

Algorithmic technique that systematically records the answers to sub-problems in a table and reuses those recorded results (rather than recomputing them).

Simple Example: Calculating the Nth Fibonacci number.

$$
\operatorname{Fib}(\mathrm{N})=\operatorname{Fib}(\mathrm{N}-1)+\operatorname{Fib}(\mathrm{N}-2)
$$

Floyd-Warshall

```
for (int k = 1; k =< V; k++)
    for (int i = 1; i =< V; i++)
    for (int j = 1; j =< v; j++)
        if ((M[i][k]+ M[k][j] ) < M[i][j] )
        M[i][j] = M[i][k]+ M[k][j]
```

Invariant: After the kth iteration, the matrix includes the shortest paths for all pairs of vertices (i,j) containing only vertices $1 . . \mathrm{k}$ as intermediate vertices

Floyd-Warshall for All-pairs shortest path

	a	b	c	d	e
a	0	2	0	-4	0
b	-	0	-2	1	-1
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

Final Matrix Contents

Initial state of the matrix:

	a	b	c	d	e
a	0	2	-	-4	-
b	-	0	-2	1	3
c	-	-	0	-	1
d	-	-	-	0	4
e	-	-	-	-	0

$M[i][j]=\min (M[i][j], M[i][k]+M[k][j])$
6

