CSE 326 Data Structures Midterm Review

Hal Perkins
Spring 2007

- You may bring a calculator, though don't even think about loading it with notes or programs. And you probably won't find it of much use anyway.

Dates

- Midterm Friday!
- Project 2 due next Wednesday
- Homework 4
- Hmmmm....
- We ought to talk about this....

Logistics

- Closed Notes
- Closed Book
- Open Mind

Material Covered

- Everything we've talked/read in class up to AVL trees
- And for AVL trees, up to inserting and rotations, but not implementations in Java

Material Not Covered

- We won't make you write syntactically correct Java code (pseudocode okay)
- We won't make you do a super hard proof
- We won't test you on the details of generics, interfaces, etc. in Java
- But you should know the basic ideas since we spent a lecture on them and had to deal with them in project 2 A

Order Notation: Definition

$\mathbf{O}(f(n))$: a set or class of functions
$\mathrm{g}(n) \in \mathrm{O}(\mathrm{f}(n)) \quad$ iff there exist consts c and n_{0} such that:
$g(n) \leq c f(n)$ for all $n \geq n_{0}$
Example: $g(n)=1000 n$ vs. $f(n)=n^{2}$
Is $g(n) \in \mathrm{O}(\mathrm{f}(n))$?
Pick: n0 = 1000, c = 1
$1000 n \leq 1 * n^{2}$ for all $n \geq 1000$ So $g(n) \in O(f(n))$

Log?

$\log _{k} n \in \mathrm{O}\left(\log _{2} \mathrm{n}\right) ?$
$\log _{k} n=\log _{2} n / \log _{2} h$
$\log _{2} \mathrm{n}^{2} \in \mathrm{O}\left(\log _{2} \mathrm{n}\right) ?$

Definition of Order Notation

- Upper bound: $T(n)=O(f(n))$

Exist constants c and n ' such that
$T(n) \leq c f(n)$ for all $n \geq n^{\prime}$

- Lower bound: $T(n)=\Omega(g(n)) \quad$ Omega

Exist constants c and n ' such that
$T(n) \geq c g(n)$ for all $n \geq n^{\prime}$

- Tight bound: $T(n)=\theta(f(n)) \quad$ Theta

When both hold:
$T(n)=O(f(n))$
$T(n)=\Omega(f(n))$

Priority Queue ADT

- Checkout line at the supermarket ???
- Printer queues ???
- operations: insert, deleteMin

Implementations of Priority Queue ADT		
	insert	deleteMin
Unsorted list (Array)	$\begin{aligned} & \text { O(1)/O(N)worst-array fif } \\ & \text { should say WHY, might } \end{aligned}$	${ }^{111, O(N)-t o ~ f i n d ~ v a l u e ~}$
Unsorted list (Linked-List)	O(1)	$\mathbf{O}(\mathbf{N})-$ to find value
Sorted list (Array)	$\begin{aligned} & \text { Olog N to find loc w. } \\ & \text { Bin search, but } \mathbf{O}(\mathrm{N}) \end{aligned}$	O(1) to find val, but $\mathbf{O}(\mathbf{1})$ if in reverse, \qquad
Sorted list (Linked-List)	$\begin{aligned} & \text { O(N) onsind loc, } O(1) \\ & \text { to do the insert } \end{aligned}$	O(1)
Binary Search Tree (BST)	O(N)	O(N)
$\begin{aligned} & \substack{\text { Plus- } \\ \text { good } \\ \text { memory } \\ \text { usage }} \\ & \text { Birnary Heatp } \end{aligned}$	$\mathbf{O}(\log \mathbf{N})$ close to $\mathrm{O}(1)$ 1.67 levels on ave	${ }_{\text {Ofe }} \mathrm{O}(\log \mathrm{N})$

Heap Structure Property

- A binary heap is a complete binary tree.

Complete binary tree - binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.

Examples:

Since they haver
structure propert
we can take
advantage of that
to store them in a
compact manner.

Heap Order Property

Heap order property: For every non-root node X, the value in the parent of X is less than (or equal to) the value in X.

(30) (15)
not a heap
This is a PARTIAL order (diff than BST)
For each node, its value is less than all of its

Heap Operations

- findMin:
- insert(val): percolate up.
- deleteMin: percolate down.
s the tree unique?
Swap 85 and 99 .

DeleteMin: percolate down

BuildHeap: Floyd's Method

Add elements arbitrarily to form a complete tree.
Pretend it's a heap and fix the heap-order property!

Red nodes need t percolate down

Operations on d-Heap

- Insert : runtime =
- deleteMin: runtime =
 requires comparison to find min, $\mathrm{O}\left(\mathrm{d} \log _{\mathrm{d}} \mathrm{n}\right)$, worst/ave

Does this help insert or deleteMin more?

Definition: Null Path Length

null path length (npl) of a node $x=$ the number of nodes between x and a null in its subtree
$\mathrm{npl}(\mathrm{x})=\min$ distance to a descendant with 0 or 1 children

- $n p l($ null $)=-1$
- $n p l($ leaf $)=0$
- $n p l($ single-child node $)=0$

Equivalent definitions:

1. $n p l(x)$ is the height of largest
complete subtree rooted at x
2. $n p l(x)=1+\min \{n p l(\operatorname{left}(x)), n p l(\operatorname{right}(\mathrm{x}))\}$

Leftist Heap Properties

- Heap-order property
- parent's priority value is \leq to childrens' priority values
- result: minimum element is at the root
- Leftist property
- For every node $x, n p l(\operatorname{left}(x)) \geq n p l(\operatorname{right}(x))$
- result: tree is at least as "heavy" on the left as the right

Are leftist trees..
complete? No,
balanced? no

Merging Two Leftist Heaps

Leftist Merge Continued

- merge $\left(T_{1}, T_{2}\right)$ returns one leftist heap containing all elements of the two (distinct) leftist heaps T_{1} and T_{2} merge done? Leftist property?

Work at each step = call to merge, swap (constant) traverse the right path of both trees $=$ length is at most $\log \mathrm{N}$ runtime:

Sewing Up the Leftist Example

Skew Heaps
Problems with leftist heaps - simple to implement, - extra storage for npl - no npl stuff - extra complexity/logic to maintain and check npl - right side is "often" heavy and requires a switch
Solution: skew heaps - "blindly" adjusting version of leftist heaps - merge always switches children when fixing right path - amortized time for: merge, insert, deleteMin $=O(\log$ n) - however, worst case time for all three $=O(n)$

Merging Two Skew Heaps

merge

Only one step per iteration, with children always switched

The Binomial Tree, B_{h}

- B_{h} has height h and exactly 2^{h} nodes
- B_{h} is formed by making B_{h-1} a child of another B_{h-1}
- Root has exactly h children
- Number of nodes at depth d is binomial coeff. ($\left.\begin{array}{l}h \\ d\end{array}\right)$
- Hence the name; we will not use this last property

Yet Another Data Structure: Binomial Queues

- Structural property
- Forest of binomial trees with at most one tree of any height

What's a forest?
What's a binomial tree?

- Order property
- Each binomial tree has the heap-order property

Merging Two Binomial Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight $\{$
a. $m \leftarrow$ total number of B_{k} 's in the two BQs
b. if $m=0$: continue;
c. if $m=1$: continue; \# of l's $0+0=0$
d. if $m=2$: combine the two B 's to form a $B-1+0=1$
e. if $m=3$: retain one B_{k} and combine the other two to form a B_{k+1}
\}

Claim: When this process ends, the forest
has at most one tree of any height

Example: Binomial Queue Merge
H1:
H2:

Example: Binomial Queue Merge

H1:
H2:

More Recursive Tree Calculations:
 Tree Traversals

Deletion in BST

Why might deletion be harder than insertion?

May be in middle, instead of at leaf

Deletion - The One Child Case

Delete(15)

Pull up child - will this always work?

Deletion - The Two Child Case

Delete(5)
 (10)

A value guaranteed to be between the two subtrees!

What can we replace 5 with?

- succ from right subtree
- pred from left subtree

How long do these operations take? (find, insert, delete)

Lazy Deletion

Instead of physically deleting nodes, just mark them as deleted

+ simpler
+ physical deletions done in batches
+ some adds just flip deleted flag
- extra memory for deleted flag
- many lazy deletions slow finds
- some operations may have to
 be modified (e.g., min and max)

Balanced BST

Observation

- BST: the shallower the better
- For a BST with n nodes
- Average height is $\mathrm{O}(\log n)$
- Worst case height is $O(n)$
- Simple cases such as insert(1, 2, 3, ..., n) lead to the worst case scenario

Solution: Require a Balance Condition that

1. ensures depth is $\mathrm{O}(\log n)$

- strong enough!

2. is easy to maintain

- not too strong!

The AVL Balance Condition

Left and right subtrees of every node
have equal heights differing by at most 1
Define: balance $(x)=$ height $(x . l e f t)-\operatorname{height}(x$. right $)$

AVL property: $-1 \leq \operatorname{balance}(x) \leq 1$, for every node x

- Ensures small depth
- Will prove this by showing that an AVL tree of height h must have a lot of (i.e. $O\left(2^{h}\right)$) nodes
- Easy to maintain
- Using single and double rotations

The AVL Tree Data Structure

Structural properties

1. Binary tree property
2. Balance property: balance of every node is between -1 and 1

Result:
Worst case depth is O($\log n$)

Ordering property

- Same as for BST

AVL tree insert

Let x be the node where an imbalance occurs.

Four cases to consider. The insertion is in the

1. left subtree of the left child of x.
2. right subtree of the left child of x.
3. left subtree of the right child of x.
4. right subtree of the right child of x.

Idea: Cases $1 \& 4$ are solved by a single rotation. Cases $2 \& 3$ are solved by a double rotation.

Fix: Apply Single Rotation

AVL Property violated at this node (x)

Single Rotation:

1. Rotate between x and child

Insertion into AVL tree

1. Find spot for new key
2. Hang new node there with this key
3. Search back up the path for imbalance
4. If there is an imbalance:

- case \#1: Perform single rotation and exit

Zig-zig
? case \#2: Perform double rotation and exit
Both rotations keep the subtree height unchanged.
Zig-zag
Hence only one (sinlge or double) rotation is sufficient!

