## CSE 326 Data Structures

CSE 326 : Dave Bacon

Priority Queues

#### Logistics

- AA 9:30 section moved to CSE 203 Project 1 – Reverse a sound file - Due Wed January 10, 2007 at electronically at midniaht
  - 11:39.00000 → Problem 5 now has two parts - Hard copy handed in Thursday in Section
- Homework 1 Due Fri January 12, 2007 at beginning of lecture
- · Reading (assume you finished Chapter 1.2.3) - Chapter 6 : Priority Queues [next lecture]

## Big-O and Friends Notation

 $\cdot \frac{2^{n/3} = O(2^n)}{G_1 \cdot n_0}$  means...  $2^{n/3} \leq C 2^n$  for 12na

## One Final Analysis Problem

· Consider the X= \( \frac{1}{V} \) i following program seament:

x at the end?

1+2+3+-- +0-2)+(N-1)+N

## Induction

• Prove by induction  $1+2+3+...=\sum_{i=1}^{N} i = \frac{N(N+1)}{2}$ 

Base case 
$$N=1$$
  
LHS  $\Sigma i = 1$  RHS  $\frac{N(4)}{2}$ 

# A Bandwidth Problem Video high Virus low towert mid ement high

FTFO Queux?

#### Priority Queue ADT

- Checkout line at the supermarket ???
- Printer queues ???
  operations: insert. deleteMin



### Priority Queue ADT

- PQueue <u>data</u>: collection of data with priority
- 2. PQueue operations
  - insert

(also: create, destroy, is empty)

 PQueue <u>property</u>: for two elements in the queue, x and y, if x has a <u>lower</u> priority value than y, x will be deleted before y

## Applications of the Priority Q

- Select print jobs in order of decreasing length
- Forward packets on network routers in order of urgency
- Select most frequent symbols for compression
   Sort numbers, picking minimum first

· Anything greedy

| Implementations of Priority Queue ADT |             |           |  |  |  |
|---------------------------------------|-------------|-----------|--|--|--|
|                                       | insert      | deleteMin |  |  |  |
| Unsorted list (Array)                 | O(1) [Q(N)] | OLN       |  |  |  |
| Unsorted list (Linked-List)           | 0(1)        | 0(4)      |  |  |  |

OCN

O(logN)

611) "on average"

0(1)

OUI

~OCN)

O(law)

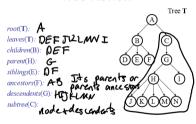
()(V) Sorted list (Array)

Sorted list (Linked-List)

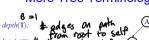
Binary Heap

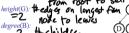
Binary Search Tree (BST) ~O(I)

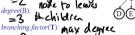
#### Tree Review



## More Tree Terminology





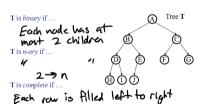






Tree T

## Some More Tree Terminology



How deep is a complete tree with n nodes?

#### Brief interlude: Some Definitions:

A Perfect binary tree - A binary tree with all leaf nodes at the same depth. All internal nodes have 2 children

height h 2h+1 - 1 nodes OI. 2h-1 non-leaves 2h leaves

#### **Full** Binary Tree

- A binary tree in which each node has exactly zero or two children.
- (also known as a proper binary tree)
- (we will use this later for Huffman trees)

## Binary Heap Properties

Structure Property

2. Ordering Property

## Heap <u>Structure</u> Property

 A binary heap is a <u>complete</u> binary tree.
 Complete binary tree – binary tree that is completely filled, with the possible exception of the bottom level, which is filled left to right.



Regular

#### Representing Complete Binary Trees in an Array 10 2 100



left child: 2i right child:21+1 parent: 1 4/2. 1

From node i

| implicit | (array) | imp | lementatio |
|----------|---------|-----|------------|
|          |         |     |            |

| im | plici | t (arı | ay) i | mple | ment | atio |
|----|-------|--------|-------|------|------|------|
|    |       |        |       |      |      |      |

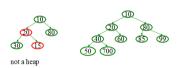


| ion: |   |    |    |    |    |   |
|------|---|----|----|----|----|---|
| G    | н | -1 | J  | K  | L  |   |
| 7    | 0 | _  | 10 | 44 | 12 | - |

Why better than tree with pointers? 1.100 Space 2. \*2, /2, +1 fast 3. Fast insert 4 Parent EZ

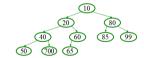
## Heap **Order** Property

Heap order property: For every non-root node X, the value in the parent of X is less than (or equal to) the value in X.



## Heap Operations

- findMin:
- · insert(val): percolate up.
- · deleteMin: percolate down.



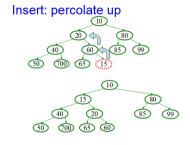
#### Heap - Insert(val)

Basic Idea:

1 Put val at "next" leaf nosition

Put val at "next" leaf position
 Repeatedly exchange node with its

parent if needed



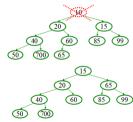
#### Heap - Deletemin

#### Basic Idea:

- 1. Remove root (that is always the min!)
- 2 Put "last" leaf node at root
- 3. Find smallest child of node4. Swap node with its smallest child if needed.
- needed.

  5. Repeat steps 3 & 4 until no swaps

## DeleteMin: percolate down





## Other Priority Queue Operations

 decreaseKev - given a pointer to an object in the gueue, reduce its priority

value Solution: change priority and

increaseKev

- given a pointer to an object in the gueue, increase its priority value

Why do we need a pointer? Why not simply data value?

Solution: change priority and

#### Other Heap Operations

decreaseKey(objPtr, amount): raise the priority of a object, percolate up increaseKey(objPtr, amount): lower the priority of a object, percolate down remove(objPtr): remove a object, move to top,

FindMax?
ExpandHeap – when heap fills, copy into new

space.

them delete. 1) decreaseKey(**objPtr**, ∞)
2) deleteMin()

Worst case Running time for all of these:
FindMay2

## Binary Min Heaps (summary)

- insert: percolate up. O(log N) time.
   deleteMin: percolate down. O(log N) time
- deleteMin: percolate down. O(log N) time.
   Next time: Even more priority queues??