CSE 326 Data Structures

CSE 326 : Dave Bacon

Priority Queues

Logistics

» AA 9:30 section moved to CSE 203
» Project 1 — Reverse a sound file
— Due Wed January 10, 2007 at electronically at

midnight 11i3a.60000
_Problem 5 now has two parts

— Hard copy handed in Thursday in Section

* Homework 1
— Due Fri January 12, 2007 at beginning of lecture
4
» Reading (assume you finished Chapter 1,2,3)
— Chapter 6 : Priority Queues [next lecture]

Big-O and Friends Notation

.« 203 = O(2") means...

3,0y guch taat QY8 LM for
N2

e 20/3=200) means....

e such ¥k 2% 227 42,

One Final Analysis Problem

+ Consider the v N (v+)
following program r= : 2
segment: &

x:=0; L=t
fori=1toNdo
—1toi . N+
forj=1toido -
xf=x+1;] X=X+l Vf'l "i’
+ What is the value of 4+ -

x at the end?

lraede — Y (V) + MV

Induction
N
* Prove by induction 1+2+3+..=>"i=

buse cose M=\

las KL =1 RRY "L”im\ﬂ:(=\
i=t
Iy\ducﬁ\/f. ‘b" P U‘L‘_Ll

TfnL‘Por M’\N Na
oy fin et
=

=t (=

A Bandwidth Problem

o Lm| video hig h
- virwy low
\def —
o\:’,\ o Torcedr wid
o emenl Wigh

FLFO Queud?

Priority Queue ADT

« Checkout line at the supermarket 7?7
* Printer queues ???
 operations: insert, deleteMin

ke w88
z

Priority Queue ADT

1. PQueue data : collection of data with
priority

2. PQueue operations
— insert
— deleteMin
(also: create, destroy, is_empty)

3. PQueue property: for two elements in the
queue, x and y, if x has a lower priority
value than y, x will be deleted before y

Applications of the Priority Q

Select print jobs in order of decreasing
length

Forward packets on network routers in
order of urgency

Select most frequent symbols for
compression

Sort numbers, picking minimum first

Anything greedy

Implementations of Priority Queue ADT

insert deleteMin
Unsorted list (Array) |O(1) [qﬂ)] ol
Unsorted list (Linked-List) | O(\) o(¥)
Sorted list (Array) OC,U\ O(,l)
Sorted list (Linked-List) | OCW) ou)
Binary Search Tree (BST) |a0(W\ A 0Cv
Binary Heap 0(lo«’p) O“%N)

O “on owereye

Tree Review

root(T): A

leaves(T): DEE NLM/V I
children(B): OEF

parent(H): G~

siblings(E): DF
ancestors(F): A’b 35 “Mh

A onLesy
descendents(G): mm >

subtree(C):
" todexdes ok

More Tree Terminology
6= TroeeT
depth(T) }, beg mﬁ_ M‘“ pY

height(G): B q on lon dd-(%n (B)
Rl
egwe ﬂc‘[\\ufk QGG @ 2

bre az)c/gg factor(T). hay ca{((o 3

Some More Tree Terminology

Tis binary if ...
Fadn vode Was at™
most 2 children
Tisn-aryif ...
L4 “t
2o9n 1510]0)

Tiscompleteif ...
Boch row o Rlled \ehto right

How deep is a complete tree with # nodes?

prief Interlude: Some

Definitions:

A Perfect binary tree — A binary tree with
all leaf nodes at the same depth. All
internal nodes have 2 children.

height h
2t<1 — 1 nodes
28— 1 non-leaves

20 leaves
é@f B @%

®®®® DG

Full Binary Tree

* A binary tree in which each node has
exactly zero or two children.

* (also known as a proper binary tree)

* (we will use this later for Huffman trees)

Binary Heap Properties

1. Structure Property
2. Ordering Property

Heap Structure Property

» A binary heap is a complete binary tree.

Complete binary tree — binary tree that is
completely filled, with the possible exception
of the bottom level, which is filled left to right.

Examples:

Palre

Rﬁ? (A

Representing Complete

Binary Trees in an Array
o 9 loo '

From node i:

left child: 2¢
right child2T4-)
parent: LZ R 1

implicit (array) implementation:

\A\B\C\D\E\F\G\H\'\J\K\'—\ \

0 1 7 8 9 10 11 12 13

Why better than tree with
pointers?

L |e2s Spate

2. %2, [1,+\ Feat
3, Tt inset

q Purnt EZ

Heap Order Property
Heap order property: For every non-root

node X, the value in the parent of X is
less than (or equal to) the value in X.

&

not a heap

Heap Operations

« findMin:
« insert(val): percolate up.
« deleteMin: percolate down.

®
D @

-

8
@

®

Heap — Insert(val)

Basic Idea:
1. Putval at “next” leaf position

2. Repeatedly exchange node with its
parent if needed

Insert: percolate u
p o p

Heap — Deletemin

Basic Idea:

1.

Remove root (that is always the min!)

2. Put “last’ leaf node at root
3.
4. Swap node with its smallest child if

Find smallest child of node

needed.

Repeat steps 3 & 4 until no swaps
needed.

DeleteMin: percolate down

Insert: 16, 32, 4, 69, 105, 43, 2

L [T 1]

4 5 6 7 8

Other Priority Queue Operations

» decreaseKey

— given a pointer to an object in the queue, reduce its priority
value

Solution: change priority and

increaseKey

— given a pointer to an object in the queue, increase its priority
value

‘Why do we need a poinfer? Why not simply data value?
Solution: change priority and

Other Heap Operations

decreaseKey(objPtr, amount): raise the priority of
a object, percolate up

increaseKey(objPtr, amount): lower the priority of
a object, percolate down

remove(objPtr): remove a object, move to top,
them delete. 1) decreaseKey(objPtr,)
2) deleteMin()
Worst case Running time for all of these:
FindMax?
ExpandHeap — when heap fills, copy into new
space.

Binary Min Heaps (summary)

« insert: percolate up. O(log N) time.

« deleteMin: percolate down. O(log N)
time.

* Next time: Even more priority queues??

