CSE 326 Data Structures
CSE 326 : Dave Bacon

Priority Queues : Leftist Heaps,
Skew Heaps, Binomial Queues



Logistics
» Updated Due Dates
— Project 2, Phase A, due Friday, January 26
— Homework 3, due Monday, January 29 in class (\.T“;

* Project 2A

— Work in partners! Easier for you, good experience
for “real” world. See webpage for
instructions...don’t forget to email about your

partnership (or, less desirably that you're working
alone.)



Merging Two Leftist Heaps

» merge(T,,T,) returns one leftist heap
containing all elements of the two
(distinct) leftist heaps T, and T,
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Leftist Merge Continued
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Operations on Leftist Heaps

merge with two trees of total size n: O(log n)
insert with heap size n:

— pretend node is a size 1 leftist heap

— insert by merging original heap with one node

heap
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« deleteMin with heap size n]
— remove and return root
— merge left and right subtrees




Random Definition:
Amortized Time

am-or-tized time:
Running time limit resulting from “writing off” expensive
runs of an algorithm over multiple cheap runs of the
algorithm, usually resulting in a lower overall running time
than indicated by the worst possible case.

If M operations take total O(M log N) time,
amortized time per operation is O(log N)
Difference from average time: 3 em,h s\'rf) s \05 N "
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Skew Heaps., gimg\e o
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Problems with leftist heaps s Y‘P

— extra storage for npl

— extra complexity/logic to maintain and check npl

— right side is “often” heavy and requires a switch
Solution: skew heaps

— “blindly” adjusting version of leftist heaps

— merge always switches children when fixing right path

— amortized time for: merge, insert, deleteMin = O(log n)

— however, worst case time for all three = O(n)




Merging Two Skew Heaps
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Only one step per iteration, with children always switched



Example
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Skew Heap Code o Cxome

void merge (heapl, heap2) { \ 2
case { &3

heapl == NULL: return heap2; D\ \l

heap2 == NULL: return heapl; 0\.\

heapl.findMin() < heap2.findMin():
temp = heapl.right;
heapl.right = heapl.left;
heapl.left = merge (heap2, temp);
return heapl;

otherwise:
return merge (heap2, heapl) ;



Runtime Analysis:
Worst-case and Amortized

No worst case guarantee on right path
length!

All operations rely on merge
= worst case complexity of all ops =)

Will do amortized analysis later in the
course (see chapter 11 if curious)

Result: M merges take time M log n
= amortized complexity of all ops = 0["’5"



Comparing Heaps

+ Binary Heaps * Leftist Heaps
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Yet Another Data Structure:
Binomial Queues

* Structural property

— Forest of binomial trees with at most
one tree of any height

0 o5 1 ‘Wharsgforesty |
I o\m 252 banch of tree |
»b\ ‘What’s a binomial tree? |

* Order property

— Each binomial tree has the heap-order
property



The Binomial Tree, B,
B, has height h and exactly 2" nodes
B, is formed by making B, , a child of another

B}M
Root has exactly h children ﬁh

Number of nodes at depth d is binomial coeff. ‘ )
— Hence the name; we will not use this Iast/

property n!
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Binomial Queue with n
elements

Binomial Q with n elements has a unique structural
representation in terms of binomial trees!

Write nin binary:  n=1101 ..., =13
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Properties of Binomial Queue
« At most one binomial tree of any height
« nnodes = binary representation is of size ?
= deepest tree has height ?M\
= number of trees is ?
0(%} n)
Define: height(forest F) = maX. 1, ¢ { height(T) }

Binomial Q with n nodeg has height ©(log n)
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Operations on Binomial
Queue
» Will again define merge as the base
operation

— insert, deleteMin, buildBinomialQ will use
merge

» Can we do increaseKey efficiently?
decreaseKey?

* What about findMin?



Merging Two Binomial
Queues

Essentially like adding two binary numbers!

1. Combine the two forests
2. For k from 1 to maxheight {

a. m <« total number of B,sin the two BQs 5

b. ifm=0: continue; ﬁfofi(s)

c. ifm=1: continue; 1+0=1

d. if m=2: combine the two B/stoforma By 1.1 — g4
e. ifm=3: retain one B, and combine the 1+l+c=14c

other two to form a By,

Claim: When this process ends, the forest
has at most one tree of any height



Example: Binomial Queue
Merge
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Example: Binomial Queue
Merge
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Example: Binomial Queue

Merge
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Example: Binomial Queue
Merge
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Example: Binomial Queue

Merge
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HI:

Example: Binomial Queue
Merge

H2:




Complexity of Merge

Constant time for each height
Max height is: log n

= worst case running time = O(



Insert in a Binomial Queue

Insert(x): Similar to leftist or skew heap

runtime

Worst case complexity: same as merge
O( )

Average case complexity: o(1)

Why??  Hint: Think of adding 1 to 1101



deleteMin in Binomial Queue

Similar to leftist and skew heaps....



deleteMin: Example

BQ |

find and delete
smallest root

\ merge BQ
(without
_______________ / the shaded part)
e e and BQ®
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deleteMin: Example
Result:
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Tree Calculations

Recall: height is max
number of edges from
root to a leaf

Find the height of the
tree...

runtime:



Tree Calculations Example

How high is this tree?




More Recursive Tree
Calculations:
Tree Traversals

A traversal is an order for
visiting all the nodes of a tree e

Three types: ° 9

« Pre-order: Root, left subtree, right

subtree @ e

« In-order: Left subtree, root, right

an expression tree
subtree ¢ P )

« Post-order: Left subtree, right subtree,
root



Traversals

void traverse (BNode t) {
if (t != NULL)
traverse (t.left);
print t.element;

traverse (t.right);



Binary Trees
« Binary tree is

—aroot
— left subtree (maybe &)
empty)
— right subtree (maybe e O
empty)
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Binary Tree: Representation

A

D J[E |7 [F
=




Binary Tree: Special Cases
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