CSE 326 Data Structures

Dave Bacon

B-Trees

Midterms graded, get back in section Thurs

Project 2 due Wednesday at 11:59pm

Homework 4 due Friday in class
(Pwh(w 2L Wess 427 wst _‘ﬂ7_l\

Reading: Finish Chapter 4
—————

xCl/m{’l“f 8,

Time to access:

CPU
(has registers) 1ns per instruction
8B - a8 210ns
Main Memory
DRAM Main Memory
Up1o1068 40-100 ns
Disk Disk AW
many GB s sk miliseconds

(5-10 Million ns)

D.c’t.mu, AT
Trees so far
V=10 Mllion

*BST worst Cuse O(NV)
[OC ! oz(bk acLesses
[0¢ 1075 = (DPsec
< AVL
Worst case O(lcg M)
(07 [01 -~ &3 7_33"0 3—:0423

* Splay amorf . aisk .
Q’los, V\ g_ alCesGes

+
) E?—Trees
%
T

Chapter 4 in Weiss

« Maximum branching factor of M

« Complete tree has height = () (le ,‘V')

disk accesses for find: etsﬂ O ((ojh"‘ \
Worsti O ()
Runtime of find: 0(/Djlﬁ“ |0‘91")__.D{ %,n\

Solution: B-Trees
« specialized M-ary search trees
M 2dges for each node
« Each node has (up to) M-1 keys:

— subtree between two keys x and y contains
leaves with values v such that
xXsv<y

« Pick branching factor M
such that each node
takes one full
{page, block}
of memory

B-Trees

4
What makes them disk-friendly? /F
Y }m /ﬂ\k\\‘t\
1. Many keys stored in a node 4 UH)JD[IJ

« All brought to memory/cache in one access!

2. Internal nodes contain only keys;
Only leaf nodes contain keys and actual data

« The tree structure can be loaded into memory
irrespective of data object size

« Data actually resides in disk

B-Tree: Example

B-Tree with M = 4 (# pointers in internal node)

andL = 4 (# data items in leaf)

Data objects, that I'll Note: All leaves at the same depth!
ignore in slides

B-Tree Properties *

—Data is stored at the leaves

—All leaves are at the same depth and
contains between [L/2] and L data items

—Internal nodes store up to M-1 keys

—Internal nodes have between [M/2 and M
children

—Root (special case) has between 2 and M
children (or root could be a leaf)

iThese are technically B-Trees

Example, Again
W entvicy = ldup

B-Tree withM = 4

and L = 4 6$T ”'440‘(

(Only showing keys, but leaves also have data!)

B-trees vs. AVL trees

Suppose we have 100 million items
(100,000,000):

* Depth of AVL Tree
leg, 10¥= 26
* Depth of B+ Tree with M = 128, L = 64

g ¥
(09,3 0° = 3%

Building a B-Tree

The empty
B-Tree

M=31-2

Insert(3)

Insert(14) A/

Now, Insert(1)?

Splitting the Root

Too many
keys in a leaf!

n

BN

Insert(1) And create

anew root

So, split the leaf.

M=-315-2

Overflowing leaves

Too many
keys in a leaf!

]] =
Insert(59) \\ Insert(26) 3
4] I‘ P
N O
x L
So, s_th_ the leaf.
4
Purest hure

foom7

B[]

And add
anew child

Propagating Splits

Insert(5)

Create a
new root

So, split the node.

[SIN

Insertion Algorithm

Insert the key in its leaf 3
If the leaf ends up with L+1

items, overflow!

— Split the leaf into two nodes:
original with [(z+1) /21
items

new one with L (z+1) /2]
items

— Add the new child to the
parent

If the parent ends up with m+1
items, overflow!

If an internal node ends up with
M+1 items, overflow!
— Split the node into two nodes:
« original with [(s#+1) /21
items
« new one with | (1) /2]
items
— Add the new child to the
parent
— If the parent ends up with m+1
items, overflow!

This makes the tree deeper! ~_|4

Split an overflowed root in two
and hang the new nodes under a
new root

Insert(89)
Insert(79)

Deletion

1. Delete item from leaf
2. Update keys of ancestors if necessary

Delete(59)

What could go wrong?

/AI()H’ cause leaf el clmM,e,.

" Deletion and Adoption

A leaf has too few keys!

Delete(5)

Whet™ :\C
iy

Does Adoption Always Work?

« What if the sibling doesn’t have enough for
you to borrow from?

e.g. you have[L/2]-1 and sibling has[L/2]?

/W/yc Togc\"l«@

Deletion and Merging
A leaf has too few keys!

Delete(3)

So, delete
the leaf

i ggic,

M=3

" Deletion with Propagation
(More Adoption)

Adopt a
neighbor

Delete(1)
(adopta
sibling)

M= 3 F 2
PUﬂlng OUt the ROOt A leaf has too few keys!

And no sibling with surplus!

Delete(26)

So, delete
the leaf;|
merge

But now the root
has just one subtree!

an

a
B
5]
B
Q.

da
=
<3
2
2
B

5
)

Delete

the node

Pulling out the Root (continued)
hasjuzth(emee!

Simply make
the one child
the new root!

Deletion Algorithm

1. Remove the key from its leaf

2. Ifthe leaf ends up with fewer
than [/2]items, underflow!
— Adopt data from a sibling;

update the parent

If adopting won’t work,

delete node and merge with

neighbor

— Ifthe parent ends up with
fewer than [»/2items,
underflow!

Deletion Slide Two

3. If an internal node ends up with fewer
than [m/2]items, underflow!
— Adopt from a neighbor;
update the parent
— If adoption won'’t work,
merge with neighbor
— Ifthe parent ends up with fewer
than [M/27items, underflow! _ This reduces the
/" height of the tree!
[

4.|If the root ends up with only one child, | /
make the child the new root of the tree

Thinking about B-Trees

B-Tree insertion can cause (expensive) splitting and
propagation

B-Tree deletion can cause (cheap) adoption or
(expensive) deletion, merging and propagation
Propagation is rare if Mand L are large

(Why?)

IfM = L = 128, then a B-Tree of height 4 will store
at least 30,000,000 items

Tree Names You Might Encounter

FYI:
—B-Trees withM = 3, L = x are called 2-3
trees
* Nodes can have 2 or 3 keys
—B-Trees withM = 4, L = x are called 2-3-4
trees
* Nodes can have 2, 3, or 4 keys

