CSE 326 Data Structures

Dave Bacon

B-Trees

- Midterms graded, get back in section Thurs
- Project 2 due Wednesday at 11:59pm
 - · Homework 4 due Friday in class

(Problem 2 Weiss 4.27 not 4.71) · Reading: Finish Chapter 4

Dechapt, S.

Dictionary ADT Trees so far N= 10 Million BST Worst Case O(N) 10 Mil disk accesses 106 · 10-35 = 103 sec · AVL Worst case O(lcg.N) log2 107 = 23 23×10-3=023 · Splay amostice 3 disk accessies alog, V)

· Maximum branching factor of M · Complete tree has height = O(log ♠ v) # disk accesses for find:

Best: O(logmu)

Worsti O(n)

Runtime of find:

01 logmn log211)= D1 log2n1

Solution: B-Trees

· specialized M-ary search trees

Medges for each node · Each node has (up to) M-1 keys:

 subtree between two keys x and v contains leaves with values v such that $x \le v \le v$ Pick branching factor M such that each node

takes one full {page, block} of memory

B-Trees

What makes them disk-friendly?

- 2. Internal nodes contain only keys;
 - Only leaf nodes contain keys and actual data
 The tree structure can be loaded into memory
 - The tree structure can be loaded into memory irrespective of data object size
 - · Data actually resides in disk

B-Tree: Example

(# data items in leaf)

B-Tree with $\mathbf{M} = \mathbf{4}$ (# pointers in internal node)

and T.

ignore in slides

B-Tree Properties ‡

- − Data is stored at the leaves
- All leaves are at the same depth and contains between \(\frac{L}{2} \) and \(\frac{L}{2} \) data items
- Internal nodes store up to M-1 keys
 Internal nodes have between M/2 and M
- children

 Root (special case) has between 2 and M

children (or root could be a leaf)

†These are technically B+-Trees

Example, Again

B-Tree with M = 4 24 entries \longrightarrow 2 deep and L = 4 6ST \longrightarrow 4deep

3 5 6 9 15 17 30 32 33 38 (Only showing keys, but leaves also have data!)

B-trees vs. AVI trees

Suppose we have 100 million items

• Depth of AVL Tree $10^8 = 26-6$ • Depth of B+ Tree with M = 128, L = 64

109/12/108 = 3/8

Building a B-Tree

Now, Insert(1)?

Splitting the Root

So, split the leaf.

Insertion Algorithm

- 1. Insert the key in its leaf If the leaf ends up with L+1 items, overflow!
 - Split the leaf into two nodes: original with \(\(\mu + 1 \) /2 \) items
 - new one with | (±+1) /2 | itame Add the new child to the
 - parent If the parent ends up with M+1
 - items, overflow!

3. If an internal node ends up with - Split the node into two nodes: original with \(\int (M+1) /2\) itame

M+1 items overflow!

- new one with (M+1) /2 | items - Add the new child to the
- parent - If the parent ends up with M+1 items, overflow!

4. Split an overflowed root in two and hang the new nodes under a new root

This makes the tree deeper!

After More Routine Inserts

Deletion

Delete item from leaf Undate keys of ancestors if necessary

Deletion and Adoption A leaf has too few keys! Delete(5) 1 3 5 1426 79 So. borrow from a sibling What if not enough to broad

Does Adoption Always Work?

 What if the sibling doesn't have enough for you to borrow from?

you to borrow from?

e.g. you have $\lceil L/2 \rceil$ -1 and sibling has $\lceil L/2 \rceil$?

Merge Togetha

Deletion and Merging A leaf has too few keys! Delete(3) Delete(4)

And no sibling with surplus!

Deletion with Propagation (More Adoption)

A Bit More Adoption

Pulling out the Root (continued)

Deletion Algorithm

Remove the key from its leaf

If the leaf ends up with fewer than \[\(\frac{L}{2} \] items, underflow!
 Adopt data from a sibling:

update the parent

If adopting won't work,
delete node and merge with
neighbor

 If the parent ends up with fewer than M/2 items,
 underflow

Deletion Slide Two

- 3. If an internal node ends up with fewer than [M/2] items, underflow!
 - Adopt from a neighbor; update the parent
 - If adoption won't work,
 - merge with neighbor
- than [M/2] items, underflow!

 4. If the root ends up with only one child, make the child the new root of the tree

- If the parent ends up with fewer

This reduces the height of the tree!

Thinking about B-Trees

- B-Tree insertion can cause (expensive) splitting and propagation
- B-Tree deletion can cause (cheap) adoption or (expensive) deletion, merging and propagation
- Propagation is rare if M and L are large
 (Why?)
 If M = L = 128, then a B-Tree of height 4 will store

 If M = L = 128, then a B-1 ree of neight 4 will store at least 30,000,000 items

Tree Names You Might Encounter

FYI: -B-Trees with M = 3 L = x are called 2-3

trees

· Nodes can have 2 or 3 keys

- B-Trees with M = 4. L = x are called 2-3-4 trees

Nodes can have 2. 3. or 4 keys