CSE 326 Data Structures

Dave Bacon
Final Review

Stay on Target....Stay on Target

Logisitics
* Hand in Homework 7

* Friday: Games and NP completeness

* Final for Section A:
Thursday March 15, 8:30-10:20 MGH 231

ﬁﬁ’"

‘t‘
&
&
&
o
&

N

Final Logisitics

» Example Final Example.(up soon)

* Final Exam Review Material (up soon)

* Homework 7 will not be returned before
final, but homework solution will be posted
shortly

* Regular office hours next week, plus, I'll be
in my office (CSE 460) 9-5. Stop by or
email for a good time to meet.

Final Material

* “Everything is fair game”
« BUT.80.90% of the material will come from
material covered after the midterm

f free§
* This means: Splay trees onward
* This means: Up to Krustkal's

é_{ F(A*dev.”
Hﬁi Mon (ot(::«;
2

Final Material Rough Map

E§tuff before the midterm
* Splay Trees, B-Trees, Memory Hierarchy]

* Hashin

- Disjoint Sets]

. Sortina

* Graph Algorithma

Splay Trees
Stlﬁﬁﬁdk‘, ,
« Blind adjusting version of AVL trees
— Why worry about balances? Just rotate anyway!
« Amortized time per operations is O(log n)
« Worst case time per operation is O(n)
— But guaranteed to happen rarely

Insert/Find always rotate node to the root!

Splay: Zig-Zag"

Special Case for Root: Zig

root (‘p root
@) 0,
—)

© | /\ A @
/N /N VAANYZAN

Splay Operations: Find

* Find the node in normal BST manner

+ Splay the node to the root
— if node not found, splay what would have

7 been its parent

/
U:}j

whon in dodet 6"%47

Splay Operations: Insert

* Insert the node in normal BST manner
+ Splay the node to the root

Splay Operations: Remove

%
IS0 A

Lk RO

Now what?
—

Jah

Join(L, R): Join
given two trees such that (stuff in L) < (stuff in R),

merge them: . .
513 ay —
AVAYFAYA
(s
Aind boia\

Splay on the maximum element in L, then
attachR

Time to access:

cPu

(has registers) 1 ns per instruction
SRAM

__‘ cacte

8KB - 4MB 210 ns

Main Memory
DRAM ain Memory
upto 10GB 40-100 ns

Disk Disk AW
sl \Disk_ miliseconds

many GB
(5-10 Million ns)

Solution: B-Trees

« specialized M-ary search trees

bz
« Each node has (up to) M-1 keys: M4 Eegt
— subtree between two keys x and ycontalns J'

leaves with values v such that
xXsv<y

« Pick branching factor M
such that each node
takes one full

{page, block}
of memory

B Tree Properties *
\

—Data is stored at the leaves

—All leaves are at the same depth and
contains between [L/2] and L data items

—_——

—Internal nodes store up to M-1 keys " (4

—Internal nodes have between TM/ZW and M
children J

—Root (special case) has between 2 and M
children (or root could be a leaf)

iThese are technically B--Trees

[SIN

Insertion Algorithm

Insert the key in its leaf 3
If the leaf ends up with L+1

items, overflow!

— Split the leaf into two nodes:
original with [(z+1) /21
items

new one with L (z+1) /2]
items

— Add the new child to the
parent

If the parent ends up with m+1
items, overflow!

If an internal node ends up with
M+1 items, overflow!
— Split the node into two nodes:
« original with [(s#+1) /21
items
« new one with | (1) /2]
items
— Add the new child to the
parent
— If the parent ends up with m+1
items, overflow!

This makes the tree deeper! ~_|4

Split an overflowed root in two
and hang the new nodes under a
new root

Deletion Algorithm

1. Remove the key from its leaf

2. Ifthe leaf ends up with fewer
than [/2]items, underflow!
— Adopt data from a sibling;

update the parent

If adopting won’t work,

delete node and merge with

neighbor

— Ifthe parent ends up with
fewer than [»/2items,
underflow!

Hash Tables

+ Constant time accesses! hash table
* A hash table is an array of some

fixed size, usually a prime number.
* General idea:

hash function:
h(K)
B —

M Qe T0)
TableSize -1

ley-:, ool Lok

key space (e g. mtegﬁs string

Collision Resolution

Collision: when two keys map to the same
location in the hash table.

e T
Two ways to resolve collisions:

1. Separate Chaining u‘ﬁ,
2. Open Addressing (linear probing,

quadratic probing, double hashing)
T)

© 00N Ok~ WON = O

“Separate Chainingﬁ)

lo

22

~SI}

167

Insert:
10

22

107

12

42

+ Separate
chaining: All keys
that map to the
same hash value
are kept in a list
(or “bucket”).

—_—

Fh @ Open Addressing

Insert:
38

[19

l 8

02 109 -
! 10

+ Linear Probing:
after checking
spot h(k), try spot
h(k)+1, if that is
full, try h(k)+2,

38 € then h(k)+3, etc.

@&J\lmmbwl\)—ko

Terminology Alert!

“Open Hashing” “Closed Hashing”
equals equals
“Separate Chaining” “Open Addressing”
—_— —— e ———

7 A

Weiss

Load Factor in Linear Probing

For any & < 1, linegg probing will find an empty
slot load hctor) = mLfl-Ut
Expected # of probes (for large table sizes)

— successful search: 1 1 1
it g 1 =z
(i) A

1 1
— unsuccessful search: ;[H)
——— 2

(1-2y

):4_ 25 pn‘t)
Linear probing suffers from primary clustering
Performance quickly degrades for A > 1/2 4

Le
frbes

Quadratic Probing [Lesikey

to encounter
; : Primary
=2

f(i) =i Clustering

* Probe sequence:
0th probe = h(k) mod TableSize
1th probe = (h(k) + 1) mod TableSize
2th probe = (h(k) + 4) mod TableSize
3th probe = (h(k) + 9) mod TableSize

ith probe = (h(k) + i2) mod TableSize

Quadratic Probing: (¢ss thw
Success guarantee for A < 1/2“)

* If size is prime and A < %, then quadratic probing
will find an empty slot in size/2 probes or fewer.
—show forallo < i,5 < size/2andi # 3

(h(x) + i%) mod size # (h(x) + 3j?) mod size
— by contradiction: suppose that for some i #j:
(h(x) + i?) mod size = (h(x) + j?) mod size
= i? mod size = 32 mod size
= (i? - 3?) mod size = 0
= [(i + 3) (i - 3)] mod size = 0
BUT size does not divide (i-3j) or (i+3j)

Double Hashing

f(i)=i"g(k)
where g is a second hash function

* Probe sequence:
0™ probe = h(k) mod TableSize

1th probe = (h(k) + g(k)) mod TableSize
2t probe = (h(k) + 2*g(k)) mod TableSize
3th probe = (h(k) + 3*g(k)) mod TableSize

it" probe = (h(") +i*g(")) mod TableSize &

Lo bt

Disjoint Sets

Chapter 8

Disjoint Union - Find
23,20,
» Maintain a set of pairwise disjoint sets.
—{3,5,7},{4,2,8}, {9}, {1,6}

» Each set has a unique name, one of its
members

-{3.5.7}.{4,.2.,8} {9}, {1.6}
T 7

Py — &

Union

. Union(%,y) — take the union of two sets
named x and y
—-{3.5.7}.{4.2.8}, {9}, {16}
~Union(s,1) -

{3.5.7,1.6},{4,2,8}, {9},

Find

* Find(x) — return the name of the set
containing x.
-{3.5,7,1,6}, {4.2,8}, {9},
—Find(1) =5 <—
—Find(4)=8

Simple Implementatioy/a.

* Array of indices 07
1’ 61_/ Up[x] = 0 means
\ X is a root.
* F Fidlg) =)
®

o

Weighted Union

* Weighted Union

— Always point the smaller (total # of nodes)
tree to the root of the larger tree

‘W-Union(1,7)

Analysis of Weighted Union
With weighted union an up-tree of height h has
weight at least 2h.
* Proof by induction
— Basis: h = 0. The up-tree has one node, 2° =1
— Inductive step: Assume true forallh’ <h.
W(T) 2 W(Tp) 2 2™

Minimum weight T We‘ghf‘ed \nd}mlmn
up-tree of height h h-1 union hypothesis
1 W(T) > 214 201 = 20

formed by
weighted unions

Analysis of Weighted Union (cont)
Let T be an up-tree of weight n formed by
weighted union. Let h be its height.
n>2h
log, n>h

* Find(x) in tree T takes O(log n) tim/

Array Implementation

Nifty Storage Trick

* Use the same array representation as
before

* Instead of storing -1 for the root,
simply store -size

[Read section 8.4, page 276]

Path Compression

+ On a Find operation point all the nodes on the
search path directly to the root.

% :W‘; @;

‘ €dllo\

Complex Complexity of
Union-by-Size + Path Compression

Tarjan proved that, with these optimizations, p union
and find operations on a set of n elements have
worst case complexity of O(p - a(p, n))

—

For all practical purposes this is amortized constant
time:

O(p - 4) for p operations! - O(/
o4y anatiae)

» Very complex analysis — worse than splay tree

analysis etc. that we skipped! Abja;‘j— s.d;

Sorting: The Big Picture

Given n comparable elements in an array,

Fancier
algorithms: algorithms:
O(n?) O(n log n)

Insertion sort Heap sort]

Comparison
lower bound:

Q(nlog n)
Selection sort Merge sort /[
Bubble sort Quick sort .
Shell sort A‘l‘ﬂ"\

trees.

Insertion Sort: Idea

* At the kth step, put the kM input element in
the correct place among the first k
elements

* Result: After the k™" step, the first k
elements are sorted.

Runtime.
3
worst case - 0(5\ |
best cage 9 n)
“average case o

Selection Sort: idea

Find the smallest element, put it 1%t

Find the next smallest element, put it 2"
Find the next smallest, put it 3

And soon ...

o6

HeapSort:
Using Priority Queue ADT (heap)

”ml' 8 13 18 23 27
Bk =V
Shove all elements into a priority queue, "
take them out smallest to largest.

Runtime. OCN (3 M

Pdelx ar~ ly/

Merge Sort MergeSort (array (1..n1)
1. split Array in half

2. Recursively sort each half

3. Merge two halves together

Merge (ail1..n],a2[1..n])
i1=1, i2=1
While (il<n, i2<n) {
if (allil] < a2[i2]) {
Next is al[il]
il++
} else {
Next is a2([i2]
i2++

“The 2-pointer method” }
}
Now throw in the dregs..

B

The steps of QuickSort

S Tz e 1 a5

Ok gich, gkl ™

select pivot value

58

partition §

&

QuickSort(S,) and
QuickSort(Sy)

15

Presto! § is sorted

BucketSort (aka BinSort)

If all values to be sorted are known to be

between 1 and K create an array count of size

K, increment counts while traversing the input,

and finally output the result. .
-~

Example K=5. Input=(5,1,3,4,3,2,1,1,5,4,5) @
count array 22
2

1 »

Running time to sort n items?

g lwiN

o ek

Fixing impracticality: RadixSort

Radix = “The base of a number system”

—We'll use 10 for convenience, but could be
anything

Idea: BucketSort on each digit,
least significant to most significant

(Isd to msd)

Internal versus External
Sorting

* Need sorting algorithms that minimize disk/tape
access time

+ External sorting — Basic Idea:

— Load chunk of data into RAM, sort, store this “run”
on disk/tape

— Use the Merge routine from Mergesort to merge
runs —__—_

— Repeat until you have only one run (one sorted
chunk)

— Text gives some examples

Graphs

Chapter 9 in Weiss

Graph Definitions

In directed graphs, edges have a specific direction:
Han Luke

Leia
In undirected graphs, they don't (edges are two-way):
Han Luke

Leia
vis adjacentto uif (u,v) € E

Representation
+ adjacency matrix:

Af]iV] _ [weight Lif (u, v) € E
o - 0 Jif W V) e E
1 2 3 4

110|(|20

Representation
+ adjacency list:

Application: Topological Sort

Given a directed graph, ¢ = (V,E), output all the
vertices in vV such that no vertex is output before
any other vertex with an edge to it.

Is the output unique? DA-G'

Graph Traversals=”

* Breadth-first search (and depth-first search) work
for arbitrary (directed or undirected) graphs - not
just mazes!

— Must mark visited vertices so you do not go into an
infinite loop!
« Either can be used to determine connectivity:
— Is there a path between two given vertices?
— Is the graph (weakly) connected?
» Which one:
— Uses a queue?
— Uses a stack?

— Always finds the shortest path (for unweighted graphs)?

Single Source Shortest Paths
(SSSP)

Given a graph G, edge costs ¢;;, and vertex
s, find the shortest paths from s to all
vertices in G.

Dijkstra’s Algorithm: Idea

PN Adapt BFS to handle
o 3 N weighted graphs
\ > .

Two kinds of vertices:
Finished or known
vertices
« Shortest distance

has
been computed
— Unknown vertices
\ /‘ + Have tentative
x distance

Dijkstra’s Algorithm: Idea

At each step:
1) Pick closest unknown
vertex
2) Add it to known
vertices
3) Update distances

Dijkstra’s Algorithm:
Pseudocode

Initialize the cost of each node to «
Initialize the cost of the source to 0

While there are unknown nodes left in the graph
Select an unknown node b with the lowest cost
Mark b as known
For each node a adjacent to b
a's cost = min(a’s old cost, b’s cost + cost of (b, a))

Dijkstra’s Algorithm: a Greedy
Algorithm

Greedy algorithms always make choices
that currently seem the best
— Short-sighted — no consideration of long-term
or global issues
— Locally optimal - does not always mean
globally optimal!!

Minimum Spanning Trees
Given an undirected graph G=(V,E), find
a graph G’=(V, E’) such that:
—FE’is asubsetof E

=[BT = V-1 Gisan
spanning tree.

— G’ is connected

- is minimal
2l
(wv)eE'

Applications: wiring a house, power
grids, Internet connections

Two Different Approaches

Prim’s Algorithm Kruskals’s Algorithm
Almost identical to Dijkstra’s Completely different!

Prim’s algorithm

Idea: Grow a tree by adding an edge from
the “known” vertices to the “unknown”
vertices. Pick the edge with the
smallest weight.

G

known

Prim’s Algorithm for MST

A node-based greedy algorithm
Builds MST by greedily adding nodes

1. Selectanode to be the “root”

mark it as known
Update cost of all its neighbors

2. While there are unknown nodes left in the graph

a.

b.
[
d.

Select an unknown node b with the smallest cost
from some known node a

Mark b as known Note: cost from some a,
Add (a, b) to MST ‘ot from oot
Update cost of all nodes adjacent to b

Kruskal's MST Algorithm

Idea: Grow a forest out of edges that do
not create a cycle. Pick an edge with

the smallest weight.

G=(V.E)

Kruskal’'s Algorithm for MST

An edge-based greedy algorithm
Builds MST by greedily adding edges

1. Initialize with
+ empty MST
« all vertices marked unconnected
« all edges unmarked
2. While there are still unmarked edges
a. Pick the lowest cost edge (u,v) and mark it
b. Ifu and v are not already connected, add (u,v) to
the MST and mark u and v as connected to each
other
Doesn’t it sound familiar?

