K-D Trees and Quad Trees

CSE 326
Data Structures
Lecture 9

Reading

» Chapter 12.6
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Geometric Data Structures

» Organization of points, lines, planes, ... to
support faster processing
» Applications
— Astrophysical simulation — evolution of galaxies
— Graphics — computing object intersections
— Data compression
« Points are representatives of 2x2 blocks in an
image
* Nearest neighbor search
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k-d Trees

+ Jon Bentley, 1975, while an undergraduate

» Tree used to store spatial data.
— Nearest neighbor search.
— Range queries.
— Fast look-up
+ k-d tree are guaranteed log, n depth where n
is the number of points in the set.

— Traditionally, k-d trees store points in d-
dimensional space which are equivalent to vectors

in d-dimensional space.
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Range Queries

Rectangular query Circular query
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Nearest Neighbor Search
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k-d Tree Construction k-d Tree Construction (1)

« If there is just one point, form a leaf with that point.
+ Otherwise, divide the points in half by a line e
perpendicular to one of the axes.
» Recursively construct k-d trees for the two sets of
points. y
+ Division strategies
— divide points perpendicular to the axis with widest spread.
— divide in a round-robin fashion (book does it this way) % Co

divide perpendicular to the widest spread.
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k-d Tree Construction (2) k-d Tree Construction (3)
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k-d Tree Construction (4) k-d Tree Construction (5)
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k-d Tree Construction (6)

k-d Tree Construction (7)
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k-d Tree Construction (9)
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k-d Tree Construction (8)
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k-d Tree Construction (10)
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k-d Tree Construction (11)
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k-d Tree Construction (12)

k-d Tree Construction (13)
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k-d Tree Construction (15)
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k-d Tree Construction (14)
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k-d Tree Construction (16)
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k-d Tree Construction (17)
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k-d Tree Construction (18)

k-d tree cell
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2-d Tree Decomposition
2
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k-d Tree Splitting

sorted points in each dimension
123456789

ie x[a[d[gble[i[c[h[f]
ylalc[bldfle[h[g[i]
he + max spread is the max of
fy-a,andi, - a.

« In the selected dimension the
b middle point in the list splits the
@ data.

* To build the sorted lists for the
other dimensions scan the sorted
list adding each point to one of two
sorted lists.

K-D Trees and Quad Trees - Lecture 9 27

k-d Tree Splitting

sorted points in each dimension

123456789
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% Co scan sorted points in y dimension
and add to correct set
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k-d Tree Construction Complexity

« First sort the points in each dimension.
— O(dn log n) time and dn storage.
— These are stored in A[1..d,1..n]
» Finding the widest spread and equally divide
into two subsets can be done in O(dn) time.
» We have the recurrence
- T(n,d) < 2T(n/2,d) + O(dn)
» Constructing the k-d tree can be done in
O(dn log n) and dn storage
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Node Structure for k-d Trees

* A node has 5 fields
— axis (splitting axis)
— value (splitting value)
— left (left subtree)
— right (right subtree)
— point (holds a point if left and right children are null)
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Rectangular Range Query

» Recursively search every cell that intersects
the rectangle.
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Rectangular Range Query (1)

Rectangular Range Query (2)
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Rectangular Range Query (3)
e
@ S8 h.
s& e s6
$ ‘ O fo
2
fez
b. s7
£ Ce
s3| st
X
K-D Trees and Quad Trees - Lecture 9 34

Rectangular Range Query (4)
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Rectangular Range Query (5)
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Rectangular Range Query (6)

Rectangular Range Query (7)
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Rectangular Range Query (8)
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print_range(xlow, xhigh, ylow, yhigh :integer, root:

Rectangular Range Query

node pointer) {
Case {
root = null: return;
root.left = null:
ifxlow < _ root.point.x and root.point.x < xhigh
and ylow < root.point.y and root.pointy < _ yhigh
then print(root);

else
if(root.axis = “x” and xlow < _ root.value ) or
(root.axis =“y" and ylow < _ root.value ) then
print_range(xlow, xhigh, ylow, yhigh, root.left);
if (root.axis =“x" and xlow > root.value ) or
(root.axis ="“y” and ylow > root.value ) then
print_range(xlow, xhigh, ylow, yhigh, root.right);

K-D Trees and Quad Trees - Lecture 9 40

Analysis of Rectangular Range
Query

» Worst case time is O(n) as seen by the
pathological example.
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k-d Tree Nearest Neighbor Search

+ Search recursively to find the point in the
same cell as the query.

+ On the return search each subtree where a
closer point than the one you already know
about might be found.

K-D Trees and Quad Trees - Lecture 9 42




k-d Tree NNS (1)

E query point
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k-d Tree NNS (3)
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k-d Tree NNS (2)
B query point
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k-d Tree NNS (4)
B query point
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k-d Tree NNS (5)

W query point
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k-d Tree NNS (6)

W query point
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k-d Tree NNS (7)

E query point
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k-d Tree NNS (11)
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k-d Tree NNS (13)

W query point
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k-d Tree NNS (10)

B query point
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k-d Tree NNS (12)

B query point
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k-d Tree NNS (14)

W query point
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k-d Tree NNS (15)

E query point
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Main is NNS(q,root,null,infinity)

Nearest Neighbor Search

NNS(q: point, n: node, p: point, w: distance) : poi nt {
if n.left = null then {leaf case}
if distance(q,n.point) < w then return n.point else return p;
else
if w = infinity then
if g(n.axis) < _ n.value then
p = NNS(q,n.left,p,w);
w := distance(p,q);
if g(n.axis) + w > n.value then p := NNS(q, n.right P W);
else
p := NNS(q,n.right,p,w);
w := distance(p,q);

if g(n.axis) - w < _ n.value then p := NNS(q, n.left, p, w);
else /Iw is finite//
if g(n.axis) - w< _ n.value then

p :=NNS(q, n.left, p, w);
w = distance(p,q);
if g(n.axis) + w > n.value then p := NNS(q, n.right ) P, W),
return p
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The Conditional
q(n.axis) + w > n.value
n.axis = x

Current nearest point "

n.value q(n.axis) + w
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Worst-Case for Nearest Neighbor Search

Notes on k-d NNS

» Has been shown to run in O(log n) average
time per search in a reasonable model.
(Assume d a constant)

+ Storage for the k-d tree is O(n).
» Preprocessing time is O(n log n) assuming d
is a constant.
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Quad Trees

+ Space Partitioning
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Quad Trees

» Space Partitioning

Quad Trees

+ Space Partitioning

be

K-D Trees and Quad Trees - Lecture 9

62

Notes on Quad Trees

» Number of nodes is O(n(1+ log(A/n))) where n
is the number of points and A is the ratio of
the width (or height) of the key space and the
smallest distance between two points

+ Height of the tree is O(log n + log A)
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A Bad Case
y
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K-D vs Quad
* k-D Trees

— Density balanced trees
— Height of the tree is O(log n) with batch insertion
— Good choice for high dimension
— Supports insert, find, nearest neighbor, range queries
* Quad Trees
— Space partitioning tree
— May not be balanced
— Not a good choice for high dimension
— Supports insert, delete, find, nearest neighbor, range queries
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Geometric Data Structures

» Geometric data structures are common.
* The k-d tree is one of the simplest.

— Nearest neighbor search

— Range queries
 Other data structures used for

— 3-d graphics models

— Physical simulations
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