K-D Trees and Quad Trees

CSE 326
Data Structures
Lecture 9

Reading

» Chapter 12.6

K-D Trees and Quad Trees - Lecture 9

Geometric Data Structures

» Organization of points, lines, planes, ... to
support faster processing
» Applications
— Astrophysical simulation — evolution of galaxies
— Graphics — computing object intersections
— Data compression
« Points are representatives of 2x2 blocks in an
image
* Nearest neighbor search

K-D Trees and Quad Trees - Lecture 9

k-d Trees

+ Jon Bentley, 1975, while an undergraduate

» Tree used to store spatial data.
— Nearest neighbor search.
— Range queries.
— Fast look-up
+ k-d tree are guaranteed log, n depth where n
is the number of points in the set.

— Traditionally, k-d trees store points in d-
dimensional space which are equivalent to vectors

in d-dimensional space.

K-D Trees and Quad Trees - Lecture 9

Range Queries

Rectangular query Circular query

K-D Trees and Quad Trees - Lecture 9

Nearest Neighbor Search

)
% he
y| d & f
be
% Ce

Nearest neighbor is e.

K-D Trees and Quad Trees - Lecture 9

k-d Tree Construction k-d Tree Construction (1)

« If there is just one point, form a leaf with that point.
+ Otherwise, divide the points in half by a line e
perpendicular to one of the axes.
» Recursively construct k-d trees for the two sets of
points. y
+ Division strategies
— divide points perpendicular to the axis with widest spread.
— divide in a round-robin fashion (book does it this way) % Co

divide perpendicular to the widest spread.

K-D Trees and Quad Trees - Lecture 9 7 K-D Trees and Quad Trees - Lecture 9

k-d Tree Construction (2) k-d Tree Construction (3)

ie e
i he i he
¢ o fo v 4 Ce fo
s2
be be
? Co) Co
s1 st
X X

K-D Trees and Quad Trees - Lecture 9 9 K-D Trees and Quad Trees - Lecture 9

k-d Tree Construction (4) k-d Tree Construction (5)

e e
Yo he i he
¢ e fo v g e fo
s2 s2
be be
? Co) Co
s3] s1 s3| s1
X X

K-D Trees and Quad Trees - Lecture 9 " K-D Trees and Quad Trees - Lecture 9

k-d Tree Construction (6)

k-d Tree Construction (7)

%

3

.Q.

o

s2

Ce

K-D Trees and Quad Trees - Lecture 9

k-d Tree Construction (9)

Ce

s3] st

K-D Trees and Quad Trees - Lecture 9

e
do he
¢ e fo
s2
be
% Ce
s3| s1
X
K-D Trees and Quad Trees - Lecture 9 13
k-d Tree Construction (8)
e
do he
4
$ - %o fo
s2
be
% Ce
s3| s1
X
K-D Trees and Quad Trees - Lecture 9 15
k-d Tree Construction (10)
e
go he
54% e. f.
s5|
s2
be
% Co
s3| s1

K-D Trees and Quad Trees - Lecture 9

k-d Tree Construction (11)

Je

s4

e
s5|

s2

be
Co

K-D Trees and Quad Trees - Lecture 9

k-d Tree Construction (12)

k-d Tree Construction (13)

%

3

.Q_

o
S5

s2

s3] st

K-D Trees and Quad Trees - Lecture 9 20

k-d Tree Construction (15)

s3] st

K-D Trees and Quad Trees - Lecture 9 22

e
% he
S4d e. s6
° fo
s2
be
% Ce
s3| s1
X
K-D Trees and Quad Trees - Lecture 9 19
k-d Tree Construction (14)
e
% he
S4d e. s6
° fo
s2
b. s7
% Ce
s3| s1
X
K-D Trees and Quad Trees - Lecture 9 21
k-d Tree Construction (16)
e
N
s4& s6
$ - ‘e fo
s2
be s7
% Co
s3| s1
X

K-D Trees and Quad Trees - Lecture 9 23

k-d Tree Construction (17)

‘e
% 8
he
s4 s6
e | ° f
[]
s5|
s2
bg |s7
° Ce
s3] st
X
K-D Trees and Quad Trees - Lecture 9 24

k-d Tree Construction (18)

k-d tree cell

s3] st

K-D Trees and Quad Trees - Lecture 9 25

2-d Tree Decomposition
2

K-D Trees and Quad Trees - Lecture 9 26

k-d Tree Splitting

sorted points in each dimension
123456789

ie x[a[d[gble[i[c[h[f]
ylalc[bldfle[h[g[i]
he + max spread is the max of
fy-a,andi, - a.

« In the selected dimension the
b middle point in the list splits the
@ data.

* To build the sorted lists for the
other dimensions scan the sorted
list adding each point to one of two
sorted lists.

K-D Trees and Quad Trees - Lecture 9 27

k-d Tree Splitting

sorted points in each dimension

123456789

iy x[a[d[gde[i[c[h[f]
ylalclbld fle[h[g]i]

indicator for each set

fo abcde fghi

[oTol1Tdo[1Tol1]4]

% Co scan sorted points in y dimension
and add to correct set

9%

€0

.Q.

y [alold[efgc fh]i]

K-D Trees and Quad Trees - Lecture 9 28

k-d Tree Construction Complexity

« First sort the points in each dimension.
— O(dn log n) time and dn storage.
— These are stored in A[1..d,1..n]
» Finding the widest spread and equally divide
into two subsets can be done in O(dn) time.
» We have the recurrence
- T(n,d) < 2T(n/2,d) + O(dn)
» Constructing the k-d tree can be done in
O(dn log n) and dn storage

K-D Trees and Quad Trees - Lecture 9 29

Node Structure for k-d Trees

* A node has 5 fields
— axis (splitting axis)
— value (splitting value)
— left (left subtree)
— right (right subtree)
— point (holds a point if left and right children are null)

K-D Trees and Quad Trees - Lecture 9 30

Rectangular Range Query

» Recursively search every cell that intersects
the rectangle.

K-D Trees and Quad Trees - Lecture 9 31

Rectangular Range Query (1)

Rectangular Range Query (2)

s3] s1

K-D Trees and Quad Trees - Lecture 9 33

e
@ s8 h.
s4 e, s6
¢ [e fo
2
s2
b. s7
% Ce
s3| st
X
K-D Trees and Quad Trees - Lecture 9 32
Rectangular Range Query (3)
e
@ S8 h.
s& e s6
$ ‘ O fo
2
fez
b. s7
£ Ce
s3| st
X
K-D Trees and Quad Trees - Lecture 9 34

Rectangular Range Query (4)

s3] s1

K-D Trees and Quad Trees - Lecture 9 35

Rectangular Range Query (5)

%% hg

s4 e, s6
$ gl hd fa
s!

s2

bg |s7

K-D Trees and Quad Trees - Lecture 9 36

Rectangular Range Query (6)

Rectangular Range Query (7)

'e
o=
he
s4 s6
d ‘ €o
° fo
5]
s2
be s7
£ Ce
s3| st
X
K-D Trees and Quad Trees - Lecture 9 38

e
EL) S8 h.
s4 e s6
$ | S fo
9
s2
b. s7
% Ce
s3| s1
X
K-D Trees and Quad Trees - Lecture 9 37
Rectangular Range Query (8)
e
) s8 h.
B e s6
¢ |[e fo
&l
s2
b. s7
% Ce
s3| s1
X
K-D Trees and Quad Trees - Lecture 9 39

print_range(xlow, xhigh, ylow, yhigh :integer, root:

Rectangular Range Query

node pointer) {
Case {
root = null: return;
root.left = null:
ifxlow < _ root.point.x and root.point.x < xhigh
and ylow < root.point.y and root.pointy < _ yhigh
then print(root);

else
if(root.axis = “x” and xlow < _ root.value) or
(root.axis =“y" and ylow < _ root.value) then
print_range(xlow, xhigh, ylow, yhigh, root.left);
if (root.axis =“x" and xlow > root.value) or
(root.axis ="“y” and ylow > root.value) then
print_range(xlow, xhigh, ylow, yhigh, root.right);

K-D Trees and Quad Trees - Lecture 9 40

Analysis of Rectangular Range
Query

» Worst case time is O(n) as seen by the
pathological example.

1 © o | @
°
°
ol © | o
y °
° o e
°
L e | o
°

X
K-D Trees and Quad Trees - Lecture 9 4“1

k-d Tree Nearest Neighbor Search

+ Search recursively to find the point in the
same cell as the query.

+ On the return search each subtree where a
closer point than the one you already know
about might be found.

K-D Trees and Quad Trees - Lecture 9 42

k-d Tree NNS (1)

E query point

s3] s1

K-D Trees and Quad Trees - Lecture 9

43

k-d Tree NNS (3)

E query point

e
g. s8

he

s3] st

K-D Trees and Quad Trees - Lecture 9

45

K-D Trees and Quad Trees - Lecture 9

46

k-d Tree NNS (2)
B query point
e
% 8
= ®
= 6
yI'g | e fo
s5|
52
b. s7
% Ce
s3| st
X
K-D Trees and Quad Trees - Lecture 9 44
k-d Tree NNS (4)
B query point
e
T
®
y Ty %o j ;
[}]
s5|
s2
be s7
? Ce
s3| st
X

k-d Tree NNS (5)

W query point

T

s4&

yITd N 7 fo
s5|
s2
bg |s7
? Co
s3 st
X

K-D Trees and Quad Trees - Lecture 9

47

k-d Tree NNS (6)

W query point

)’54(1

5|

P re
% |’ fo

s2

b

s3| s1

bg |s7
Co

K-D Trees and Quad Trees - Lecture 9

48

k-d Tree NNS (7)

E query point

g.(;:}: he

fo

s3] st

Ce

K-D Trees and Quad Trees - Lecture 9

49

k-d Tree NNS (11)

E query point

g.(;;}: he

fo

Ce

s3] s1

K-D Trees and Quad Trees - Lecture 9

k-d Tree NNS (13)

W query point

3

s2

s3] s1

X d @

K-D Trees and Quad Trees - Lecture 9

53

k-d Tree NNS (10)

B query point

g.(-\\s e

\e‘/ 6

fo

be s7
Co

3] st

X d E

K-D Trees and Quad Trees - Lecture 9

50

k-d Tree NNS (12)

B query point

e
% 8 h
m) "
54 e £6
% fo
S5
52
b, s7
e
2 Ce
s3] s1

X d E

K-D Trees and Quad Trees - Lecture 9

52

k-d Tree NNS (14)

W query point

% 8 h
e
7 6
s (% ‘ed”) fo
s5|
s2
be |s7
? Co
s3] st
X

K-D Trees and Quad Trees - Lecture 9

54

k-d Tree NNS (15)

E query point

90(;\/}: he

Main is NNS(q,root,null,infinity)

Nearest Neighbor Search

NNS(q: point, n: node, p: point, w: distance) : poi nt {
if n.left = null then {leaf case}
if distance(q,n.point) < w then return n.point else return p;
else
if w = infinity then
if g(n.axis) < _ n.value then
p = NNS(q,n.left,p,w);
w := distance(p,q);
if g(n.axis) + w > n.value then p := NNS(q, n.right P W);
else
p := NNS(q,n.right,p,w);
w := distance(p,q);

if g(n.axis) - w < _ n.value then p := NNS(q, n.left, p, w);
else /Iw is finite//
if g(n.axis) - w< _ n.value then

p :=NNS(q, n.left, p, w);
w = distance(p,q);
if g(n.axis) + w > n.value then p := NNS(q, n.right) P, W),
return p

K-D Trees and Quad Trees - Lecture 9 56

7
E 'S ‘ fo
5|
s:
b. s7
? Ce
s3 s1
X
K-D Trees and Quad Trees - Lecture 9 55
The Conditional
q(n.axis) + w > n.value
n.axis = x

Current nearest point "

n.value q(n.axis) + w

K-D Trees and Quad Trees - Lecture 9 57

Worst-Case for Nearest Neighbor Search

Notes on k-d NNS

» Has been shown to run in O(log n) average
time per search in a reasonable model.
(Assume d a constant)

+ Storage for the k-d tree is O(n).
» Preprocessing time is O(n log n) assuming d
is a constant.

K-D Trees and Quad Trees - Lecture 9 59

B query point +Half of the points
visited for a query
° o e *Worst case O(n)
°
° +But: on average
° (] (] (and in practice)
= ® nearest neighbor
y [° ° queries are O(log N)
e
o e
°
X
K-D Trees and Quad Trees - Lecture 9 58
Quad Trees

+ Space Partitioning

e
Jdeo he

fo

K-D Trees and Quad Trees - Lecture 9 60

10

Quad Trees

» Space Partitioning

Quad Trees

+ Space Partitioning

be

K-D Trees and Quad Trees - Lecture 9

62

Notes on Quad Trees

» Number of nodes is O(n(1+ log(A/n))) where n
is the number of points and A is the ratio of
the width (or height) of the key space and the
smallest distance between two points

+ Height of the tree is O(log n + log A)

K-D Trees and Quad Trees - Lecture 9 64

%
y ,1‘ (7Y o
be
% Co
X
K-D Trees and Quad Trees - Lecture 9 61
A Bad Case
y
&
X
K-D Trees and Quad Trees - Lecture 9 63
K-D vs Quad
* k-D Trees

— Density balanced trees
— Height of the tree is O(log n) with batch insertion
— Good choice for high dimension
— Supports insert, find, nearest neighbor, range queries
* Quad Trees
— Space partitioning tree
— May not be balanced
— Not a good choice for high dimension
— Supports insert, delete, find, nearest neighbor, range queries

K-D Trees and Quad Trees - Lecture 9 65

Geometric Data Structures

» Geometric data structures are common.
* The k-d tree is one of the simplest.

— Nearest neighbor search

— Range queries
 Other data structures used for

— 3-d graphics models

— Physical simulations

K-D Trees and Quad Trees - Lecture 9 66

11

