Data Compression:
Huffman Coding

10.1 in Weiss (p.389)

Why compress files?

Why compress files?

 For long term storage (disc space is limited)

« For transferring files over the internet (bigger
files take longer)

« A smaller file more likely to fit in
memory/cache

What is a file?

e C++ program code

« Executable program
e Email -text

e HTML document

« Pictures (lossy); JPEG
+ Video (lossy); MPEG
« Audio (lossy); MP3

Data Compression

original sompressed ompressed
Y)
—X___ 1 Encoder Decoder X

Data Compression

original sompressed ompressed

Y ,
—X___ 1 Encoder Decoder X

» Losslesscompression X = X’
e Lossycompression X != X
e Compression Ratio |X|/]Y]

— Where |X| is the # of bits in X.

Lossy Compression

* Some data is lost, but not too much.
Standards

* JPEG (Joint Photographic Experts Group) —
stills

*« MPEG (Motion Picture Experts Group)
— Audio and video

« MP3 (MPEG-1, Layer 3)

Lossless Compression

* No data is lost.

Standards:

« Gzip, Unix compress, zip, GIF, Morse code
« Examples:

— Run-length Encoding (RLE)
— Huffman Coding

RLE

« ldea: Compactly represent long ‘runs’ of the
same character

* “aaarrrrr!” as ‘a’x3 ‘r'x5 then ‘I

RLE

« ldea: Compactly represent long ‘runs’ of the
same character

* “aaarrrrr!” as ‘a’x3 ‘r'x5 then ‘I’
e Say...

— Replace all ‘runs’ of the same character by 2
characters: the 1) character and 2) the length

— ‘bee’ becomes ‘b’,1,’e’,2

10

RLE

 |ldea: Compactly represent long ‘runs’ of the
same character
 “aaarrrrr!” as ‘a’x3 ‘r'x5 then
e Say...
— Replace all ‘runs’ of the same character by 2
characters: the 1) character and 2) the length
— ‘bee’ becomes ‘b’,1,’e’,2
— When is this good?
— When is this really bad?

11

Another idea: Use fewer bits per
character
ASCII = fixed 8 bits per character

Example: “hello there”
— 11 characters * 8 bits = 88 bits

Can we encode this message using fewer bits?

12

Another idea: Use fewer bits per
character

ASCII = fixed 8 bits per character

Example: “hello there”
— 11 characters * 8 bits = 88 bits

Can we encode this message using fewer bits?
* We could look JUST at the message
« there are only 6 possible characters + one spacthings;
only need 3 bits
* Encode: aabddcaa = could do as 16 bits (eachathara2
bits each)

* Huffman can do as 14 bits
13

» Usesfreqguencies of symbols in a

Huffman Coding

Huffman Coding

. Us_esf@m of §ymbols ina Letter | code
string to build grefix code.

* Prefix Code— no code in our a 0
encoding is a prefix of another |, 100
code.

c 101
d 11

15

string to build grefix code. Letter | code

 Prefix Code—no codeinour |a 0
encoding is a prefix of another |p 100
code. c |01

d 11
14
Huffman Coding

. Us_esfr@uer_m% of §ymbols inam = Toode
string to build grefix code.

» Prefix Code—nocodeinour |a 0
encoding is a prefix of another |, 100
code. ¢ |101

d 11

16

Decoding a Prefix Code

Loop
start at root of tree
loop
if bit read = 1 then go right
else, go left
until node is a leaf
Report character found!
Until end of the message

17

Decode: 11100010100110

Letter | code
a 0

b 100
c 101
d 11

18

Decode: 11100010100110

Huffman Trees

Cost of a Huffman Tree containing n symbols
C(T) = py*r +Po*T o+ P3*r g*....+ P

Where:
p; = the probability that a symbol occurs

r; = the length of the path from the root to the
node

20

Letter | code
a 0
b 100
c 101
d 11
19
Example Cost
Letter | Frequency | code Cost: 1.75
a .50 0
b 125 100
c 125 101
d .25 11

21

Constructing a tree

» Determine frequency of each letter/symbol
» Place each as an unconnected leaf node

* Repeatedly merge two nodes with lowest
frequency into one node with sum of
frequencies

» Huffman Coding is optimal*

22

Constructing a tree example

* Encode “ajava jar’
 4a's,2spaces,2j's,1v,1r; 10 total

a .4 space: .2 ji .2 V.. nr.l

23

Constructing a tree example

* Encode “ajava jar”
 4a's,2spaces, 2j's,1v, 1r; 10 total

’_li‘

a .4 space: .2 ji .2 V.. nr.l

24

Constructing a tree example

Encode “a java jar”
4 a’s, 2 spaces, 2j's,1v, 1r; 10 total

D4 space: .2 ji .2 V.. r.l

25

Constructing a tree example

* Encode “ajava jar”
 4a's,2spaces,2j's,1v,1r; 10 total

.6

a .4 space: .2 ji.2 V.. nr.l

26

Constructing a tree example

Encode “a java jar”
4 a’s, 2 spaces, 2j's,1v, 1r; 10 total
1.0

24 space: .2 ji.2 M.l

27

Constructing a tree example

* Encode “ajava jar”
e« 4a’s,2spaces, 2j's,1v, 1r; 10 total

28

a.

Constructing a tree example

Encode “a java jar”
4 a's, 2 spaces, 2j's,1v, 1r; 10 total

4 space: .2 ji .2 V.. r.l
10 011 1110 1111

29

Constructing a tree example

* Encode “ajava jar”
 4a's,2spaces, 2j's,1v, 1r; 10 total

a .4 space: .2 ji .2 V.. nr.l
0 10 011 1110 1111
Cost= .4*1 + 22 + 243+ Q¥4+ 1*4=22%

Run-time?

To decode an encoded message length n:

31

Run-time?

To decode an encoded message length n: G

To encode message length n, with ¢ possibl
characters

Count frequencies:
Build tree:
Encode:

33

~—~

1”2

n)

Run-time?

To decode an encoded message length n: d

To encode message length n, with ¢ possibl
characters

32

(n)

D

Run-time?

To decode an encoded message length n: G

To encode message length n, with ¢ possibl
characters

Count frequencies: O(n)
Build tree: O(clogc) (with priority queue)
Encode: O(n)

34

~—~

n)

1”2

