
1

Data Compression:
Huffman Coding

10.1 in Weiss (p.389)

2

Why compress files?

3

Why compress files?

• For long term storage (disc space is limited)

• For transferring files over the internet (bigger
files take longer)

• A smaller file more likely to fit in
memory/cache

4

What is a file?

• C++ program code

• Executable program

• Email - text

• HTML document

• Pictures (lossy); JPEG

• Video (lossy); MPEG

• Audio (lossy); MP3

5

Data Compression

Encoder DecoderX Y X’

original compressed decompressed

6

• Losslesscompression X = X’

• Lossycompression X != X’

• Compression Ratio |X|/|Y|
– Where |X| is the # of bits in X.

Data Compression

Encoder DecoderX Y X’

original compressed decompressed

7

Lossy Compression

• Some data is lost, but not too much.

Standards:
• JPEG (Joint Photographic Experts Group) –

stills

• MPEG (Motion Picture Experts Group)
– Audio and video

• MP3 (MPEG-1, Layer 3)

8

Lossless Compression

• No data is lost.

Standards:
• Gzip, Unix compress, zip, GIF, Morse code

• Examples:
– Run-length Encoding (RLE)

– Huffman Coding

9

RLE

• Idea: Compactly represent long ‘runs’ of the
same character

• “aaarrrrr!” as ‘a’x3 ‘r’x5 then ‘!’

10

RLE

• Idea: Compactly represent long ‘runs’ of the
same character

• “aaarrrrr!” as ‘a’x3 ‘r’x5 then ‘!’

• Say…
– Replace all ‘runs’ of the same character by 2

characters: the 1) character and 2) the length

– ‘bee’ becomes ‘b’,1,’e’,2

11

RLE

• Idea: Compactly represent long ‘runs’ of the
same character

• “aaarrrrr!” as ‘a’x3 ‘r’x5 then ‘!’

• Say…
– Replace all ‘runs’ of the same character by 2

characters: the 1) character and 2) the length

– ‘bee’ becomes ‘b’,1,’e’,2

– When is this good?

– When is this really bad?
12

Another idea: Use fewer bits per
character

ASCII = fixed 8 bits per character

Example: “hello there”
– 11 characters * 8 bits = 88 bits

Can we encode this message using fewer bits?

13

Another idea: Use fewer bits per
character

ASCII = fixed 8 bits per character

Example: “hello there”
– 11 characters * 8 bits = 88 bits

Can we encode this message using fewer bits?
• We could look JUST at the message

• there are only 6 possible characters + one space = 7 things;
only need 3 bits

• Encode: aabddcaa = could do as 16 bits (each character = 2
bits each)

• Huffman can do as 14 bits
14

Huffman Coding

• Uses frequencies of symbols in a
string to build a prefix code.

• Prefix Code– no code in our
encoding is a prefix of another
code.

Letter code

a 0

b 100

c 101

d 11

15

Huffman Coding

• Uses frequencies of symbols in a
string to build a prefix code.

• Prefix Code– no code in our
encoding is a prefix of another
code.

Letter code

a 0

b 100

c 101

d 11

16

Huffman Coding

• Uses frequencies of symbols in a
string to build a prefix code.

• Prefix Code– no code in our
encoding is a prefix of another
code.

Letter code

a 0

b 100

c 101

d 11

17

Decoding a Prefix Code

Loop
start at root of tree

loop
if bit read = 1 then go right
else, go left

until node is a leaf
Report character found!

Until end of the message

18

Decode: 11100010100110

Letter code

a 0

b 100

c 101

d 11

19

Decode: 11100010100110

Letter code

a 0

b 100

c 101

d 11

20

Huffman Trees

Cost of a Huffman Tree containing n symbols

C(T) = p1*r 1+p2*r 2+p3*r 3+….+ pn*r n

Where:
pi = the probability that a symbol occurs
r i = the length of the path from the root to the

node

21

Example Cost

Letter Frequency code

a .50 0

b .125 100

c .125 101

d .25 11

Cost: 1.75

22

Constructing a tree

22

• Determine frequency of each letter/symbol
• Place each as an unconnected leaf node
• Repeatedly merge two nodes with lowest

frequency into one node with sum of
frequencies

• Huffman Coding is optimal*

23

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

24

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

.2

25

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

.4

26

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

.6

27

1.0

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

28

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

0 1

0

0

0

1

1

1

29

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

0 1

0

0

0

1

1

0 10 110 1110 1111

1

30

Constructing a tree example

• Encode “a java jar”
• 4 a’s, 2 spaces, 2 j’s, 1 v, 1 r; 10 total

a: .4 space: .2 j: .2 v: .1 r: .1

0 1

0

0

0

1

1

0 10 110 1110 1111

1

Cost = .4*1 + .2*2 + .2*3 + .1*4 + .1*4 = 2.2

31

Run-time?

• To decode an encoded message length n:

32

Run-time?

• To decode an encoded message length n: O(n)
• To encode message length n, with c possible

characters

33

Run-time?

• To decode an encoded message length n: O(n)
• To encode message length n, with c possible

characters
• Count frequencies:
• Build tree:
• Encode:

34

Run-time?

• To decode an encoded message length n: O(n)
• To encode message length n, with c possible

characters
• Count frequencies: O(n)
• Build tree: O(clogc) (with priority queue)
• Encode: O(n)

