Worksheet for Thursday, Nov 4, 1999.

Some questions are marked (optional), because this worksheet will probably take too much time, and those questions are more or less redundant.

1. What is the running time of the following program, in big-theta terms.

procedure Boople (int n)

for i from n to 4*n do

for j from n to 4+n do

x=x*2

2. (optional) What is the running time of the following program, in big-theta terms:

procedure Squonk (int m, int n)

for i from 1 to m do

x=1

while x < n do

x=x*3.1415926535897

3. (optional) Okay, how about this one:

procedure Explacicious (int n)

x=1

while x < 2*n do

x=x*3

x=x-1

4. Great! And this one?

procedure Limickstonfudd (int n)

if n<=1 then

return

x=1

for i from 1 to 18 do

x=x*3

Limickstonfudd (n/x)

Bonus: what would be the running time if we had 2 function calls of Limickstonfudd(n/x), instead of only 1? Careful

5. We learned and implemented a greedy algorithm to create static Huffman trees using heaps. What is the running time of this algorithm in big-Theta terms, in terms of the input file size and the size of the alphabet?

Recall that the basic idea of the Huffman tree algorithm is:

NOTE: I’m giving you the outline to reduce the time that this question takes. You will not get pseudocode on the midterm.

Write out all letters

Let Value(letter) be its frequency

Call each letter a 1-node Tree.

Repeat until everything’s in the same Tree

Pick two lowest Trees, X,Y

Make a new node, N.

Make X and Y children of N

Value(N)=Value(X)+Value(Y)
6. Consider the following tree:

[image: image1.wmf]5

2

1

3

12

12

9

11

4

Consider the following traversal:

1,4,3,2,11,9,12,12,5

(Hey! At least say “Hmmm” when you’re considering something.)

(a)

What kind of traversal is this:

(A) preorder, (B) postorder, (C) inorder, (D) level-order, (E) breadth-first

Note: the following questions are just to review the terms; they’ll be pretty uninteresting if you know the terms.

(b)

Is this tree a Binary Search Tree?

(c)

Is this tree a valid AVL tree?

(d)

Is this tree complete?

(e)

Is this tree full?

(f)

Is this tree perfect?

(g)

What’s the depth of the ‘3’ node? What’s its height?

7. Suppose f(n)=
[image: image2.wmf]å

+

=

2

3

n

n

i

i

. What is f(2)? Please don’t just do it by hand (if you don’t want to do it, don’t). Writing the formula with numbers substituted, but without the final number is fine for this worksheet.

8. What is the sum of all integers from 1 to 100 (inclusive)?

9. Express the following f(n) in big-Theta terms, in terms of n:

[image: image3.wmf]å

=

×

=

n

i

i

n

f

1

27

1

)

(

10. For a perfect Binary Search Tree, the find operation takes ((log n) time. Give an argument as to why this is the case (doesn’t have to be a formal proof).

11. Find 3 functions f(n),g(n),h(n), that are ((n2) and also o(n3), but which are not in big-Theta of each other.

12. Find 2 functions f(n),g(n),h(n), that are o(n4) but are not O(n3) , but which are not in big-Theta of each other. Hint: you might be able to re-use some of your work for question #11.

13. The following is a “graph” of 5 different cities. You can assume that the drawing is to scale to figure out distances. Riverton is the same distance from Funton as to Manila.

[image: image4.wmf]Riverton

Funton

Waysaton

Purpleville

Manila

Suppose a Travelling Saleswoman decides to use the Greedy algorithm to find the best path through each city, starting and ending at Riverton. What would her path be?

Is this the best path? If not, what is the best path.

Describe the basic idea of how we could use the Floyd-Warshall algorithm to find the best route from Riverton to Purpleville.

14. Consider the following set, S, of binary strings:

S = 11, 101, 10000, 0.

What is the shortest binary string we could add to S such that S would still obey the prefix property?

15. (optional) How many full binary trees are there with height 2?

16. Describe in mathematical terms the Push and Pop operations on a Stack.

17. Given an unordered list, let pi be the probability that someone wants to find the ith element of the list. The list has n elements. Say that pi=1/(2i), except that pn=1/(2n-1). If n=3, what is the expected number of elements we’ll have to look at before we find the correct one? How about if n is infinite?

18. Is basic Calculus a prerequisite for CSE 326?

19. What’s the resulting AVL tree when you insert 7 into the following AVL tree:

[image: image5.wmf]6

3

9

12

8

20. (optional Amortized analysis question, but not using splay trees) Consider the following code that counts in binary. Note that I’m assuming that BitArray is arbitrarily long.

{global variables}

BitArray: Table[?]

NumBits: int

procedure InitializeVariables ()

NumBits=1

BitArray[1]=0

procedure AddOne ()

x=1

while BitArray[x]=1 do

BitArray[x]=0

x=x+1

if x>NumBits then do

{ here’s a bit we haven’t gotten to yet }

BitArray[x]=0

NumBits=x

end if

endwhile

BitArray[x]=1

What is the worst-case running time of AddOne in big-Theta terms? You probably want to figure it out in terms of the value of NumBits.

Consider the following function:

procedure CountToN (int n)

InitializeVariables

for i from 1 to n

AddOne ()

What is the running time of CountToN?

END OF WORKSHEET.

Answers for Thursday, Nov 4, 1999

1. ((n). Outer loop is linear, inner loop in constant, x is irrelevant.

2. ((m*log n). It’s linear in m. 3.141… is more than 1, so x will increase exponentially, so the number of inner loops is logarithmic in n.

3. ((log n). while x<2*n, while x<n – same thing. Also, for all x>=1, x*3-1 is always at least x*2, so x is still increasing exponentially, so the number of loops is logarithmic.

4. ((log n).

x is a constant, but a fairly large one (it’s 318). f(n)=1+f(n/x).

Or, f(n)=1+1+f(n/x2). Or, f(n)=1+1+1+f(n/x3).

There are logarithmically many terms (think about if x=2, or x=3), so it’s ((log n).

Bonus: Think about what would have happened if we had 2 calls to Limickstonfudd. Careful, at least one person’s intuition about this was wrong (okay, it was me). No answer here (mainly since I’m running out of time before section ().

If you write out the recursion, you’ll see this is a case of the Divide and Conquer Recurrence Theorem, described in the textbook on pages 27-33 (formula on page 32).

5. Well…

n = Size of input file

m = Size of alphabet

First we count up the frequencies of all of the letters in the file. We do this in ((n), since we’re using an array, so each letter can be updated in constant time.

Okay, then we add all of the letters in the alphabet into our heap. This is ((m*log(m)).

Now, we start combining trees. We start off with a forest of m trees. Then we call DeleteMin twice, combine 2 trees (to get 1 less), and call Insert on the heap. Since we eliminate 1 tree every time we do this and we start with m trees, we do this m times. Each time takes ((log m), since we have 3 operations, each of which is logarithmic (not really, since m is decreasing, but we can think of it this way). So, this is ((m*log(m)).

And presto, we have a Huffman tree.

So, the running time of this algorithm is ((n + m*log(m))

6. Answers:

It’s Postorder.

It is a valid binary tree (Well, you could reasonably define the BST property to say that the right subtree of a node has values that are strictly greater than the node’s value. In this case the two 12’s would violate this property. But this is not how we usually define a BST).

It’s a valid AVL tree.

It’s not complete.

Not full.

Not perfect (but hey, so few trees are these days)

Depth(3-node)=2, Height(3-node)=1 according to book’s definition.

7. Let’s derive our formula:

[image: image6.wmf]c

c

c

S

S

c

c

cS

S

n

m

m

n

n

m

i

i

c

-

-

=

=

+

-

=

+

+

=

å

1

1

1

So, plugging things into our formula:

m=2, n=2+2=4, c=3

(9-243)/(1-3)=234/2=117

8. Here’s our other formula:

[image: image7.wmf]2

)

1

(

+

=

å

n

n

n

i

i

One way to think of this is to group 1 with n, 2 with n-1, 3 with n-2, etc. All of these pairs sum to (n+1), but there’s half as many pairs as the original number, so multiply n and divide by 2.

In this case n=100.

So the answer is 100*101/2=5050.

9. This is the harmonic sequence, just divided by 27. So it’s still ((log(n))

10. The find operation is composed of finding which subtree the key is in, and looking for that. Each time we do this operation, we go down 1 level in the tree. Since there are ((log n) levels in a tree, the running time is ((log n).

11. Some possibilities are:
[image: image8.wmf]))

log(log(

,

,

),

log(

,

2

471

.

2

2

2

2

n

n

n

n

n

n

n

n

 and many others.

12. Take all of the solutions from question 11, except for
[image: image9.wmf]2

n

 and multiply by n.

13. There are two answers.

One is Riverton, Funton, Manila, Purpleville, Waysaton, Funton, Riverton.

The other is Riverton, Manila, Funton, Waysaton, Purpleville, Manila, Riverton

No it’s not the best path. There are two best paths.

One is Riverton, Funton, Waysaton, Purpleville, Manila, Riverton

The other is: Riverton, Manila, Purpleville, Waysaton, Funton, Riverton.

F-W would work by keeping track of the best known route between each city, starting with direct connections only. Then it looks for each city and thinks if it could go faster through that city than whatever route it currently knows about.

14. “1001”.

15. I got 3.

16. There are many ways of doing this.

Suppose a Stack, from top to bottom has elements S1,S2,S3,…,Sn.

Then E=Pop(S), means E=S1, and S’=S2,S3,…,Sn.

And Push(E,S), means S’=E, S1,S2,S3,…,Sn.

17. First, let’s derive the formula from scratch.

From before, we had

[image: image10.wmf]c

c

c

S

S

c

c

cS

S

n

m

m

n

n

m

i

i

c

-

-

=

=

+

-

=

+

+

=

å

1

1

1

So

[image: image11.wmf]series)

geometric

for

formula

our

applying

-

(re

)

1

(

1

1

1

1

formula)

our

using

and

order,

different

a

in

 things

adding

re

 we'

-

out

it

(write

1

1/2)

is

c

(where

)

(

2

1

1

1

1

1

1

1

c

c

c

c

c

n

c

c

c

c

n

c

c

c

c

i

n

Expected

n

n

n

i

n

n

i

n

i

n

i

i

-

-

+

-

×

-

=

-

+

-

×

-

=

-

-

=

×

=

+

+

=

+

=

+

=

å

å

å

So, for c=1/2, n=3, this is:

[image: image12.wmf]8

3

1

Okay, now for the n=infinity case:

[image: image13.wmf]2

)

4

1

(

)

2

1

(

)

2

1

1

(

2

1

)

1

(

)

1

(

1

lim

lim

2

2

2

1

1

1

=

=

-

=

-

=

-

-

+

-

×

-

=

×

+

+

¥

®

=

¥

®

å

c

c

c

c

c

c

c

n

c

i

n

n

n

n

i

i

n

18. I hope so.

19. Here’s the transitions in the AVL insert.

[image: image14.wmf]6

3

9

12

8

0

0

0

0

+1

[image: image15.wmf]6

3

9

12

Then

0

-1

0

0

-1

+2

This is the critical

node, but it's

over-high child is

in the wrong

direction (-1)

So, first Right

rotate the child, to

make it go +1.

8

7

[image: image16.wmf]6

3

9

12

Then

0

0

0

+2

+1

+1

Now rotate Left

8

7

[image: image17.wmf]3

9

12

8

Finally

0

+1

0

0

0

0

6

7

20. Worst case of AddOne is ((NumBits), if you have to carry through all of the digits. CountToN is ((n), which is amortized analysis in disguise.

Note that with CountToN, there’s 1 number that takes log(n) time, there’s 2 numbers that take log(n)-1 time, there’s 3 numbers that take log(n)-3 time. Problem #17 gives the limit of the expected case for each call of AddOne (constant), then you multiply by n.

_1003174583.unknown

_1003176178.unknown

_1003213247.unknown

_1003214367.vsd
6�

3�

9�

12�

8�

Then�

7�

0�

-1�

0�

0�

-1�

+2�

This is the critical
node, but it's over-high child is in the wrong direction (-1)�

So, first Right rotate the child, to make it go +1. �

_1003241500.vsd
5�

2�

1�

3�

12�

12�

9�

11�

4�

_1003214364.vsd
6�

3�

9�

12�

8�

Finally�

7�

0�

0�

0�

0�

0�

+1�

_1003214366.vsd
6�

3�

9�

12�

8�

Then�

7�

0�

+1�

0�

0�

+2�

+1�

Now rotate Left�

_1003214254.vsd
6�

3�

9�

12�

8�

0�

0�

0�

0�

+1�

_1003176311.unknown

_1003176355.unknown

_1003175050.unknown

_1003175179.unknown

_1003174763.unknown

_1003172463.vsd
6�

3�

9�

12�

8�

_1003174180.unknown

_1003166939.vsd
�

Riverton�

Funton�

Waysaton�

Purpleville�

Manila�

