
CSE 331
Software Design & Implementation

Kevin Zatloukal
Spring 2021

Lecture 4½ – Reasoning Wrap-up

Interview Question

Sorted Matrix Search

Problem Description

Given a matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

CSE 331 Spring 2021 3

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

CSE 331 Spring 2021 4

Sorted Matrix Search

Given a sorted matrix M (of size m x n), where every row and every
column is sorted, find out whether a given number x is in the matrix.

(darker color means larger)

(One) Idea: Trace the contour between the numbers ≤ x and > x
in each row to see if x appears.

CSE 331 Spring 2021 5

< x >= x

Sorted Matrix Search Code

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]
• for each i, holds for exactly one j
• holds when we are in the right spot in row i

CSE 331 Spring 2021 6

i

j

Sorted Matrix Search Code

Initialization:

Partial Invariant: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1]

How do we get the invariant to hold with i = 0?
• no easy way to initialize it so the invariant holds
• we need to search...

CSE 331 Spring 2021 7

i
j

Sorted Matrix Search Code

Initialization:

New goal: M[0,0], ..., M[0,j-1] < x ≤ M[0,j], ..., M[0,n-1]
• will need a loop to find j
• Loop invariant: x ≤ M[0,j], ..., M[0,n-1]

– weakening of the new goal
– decrease j until we get M[0,j-1] to also hold

CSE 331 Spring 2021 8

i
j

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = ?

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2021 9

i
j

What is the easiest way to
make this hold initially?

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2021 10

i
j

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (??)
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2021 11

i
j

When does the postcondition hold?
(Careful!)

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
??

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2021 12

i
j

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Spring 2021 13

i
j

What goes here?

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {
??
j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Spring 2021 14

i
j

{{ x ≤ M[i,j], ..., M[i,n-1] }}
{{ x ≤ M[i,j-1], ..., M[i,n-1] }}

{{ x ≤ M[i,j], ..., M[i,n-1] and x ≤ M[i,j-1] }}

Sorted Matrix Search Code

Initialization:

int i = 0, j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1]) {

j = j – 1;

}

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
CSE 331 Spring 2021 15

i
j

What goes here?
Nothing!

Sorted Matrix Search Code

Initialization:

int i = 0;
int j = n;

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])
j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}

CSE 331 Spring 2021 16

i
j

Sorted Matrix Search Code

That finds the right column in row 0
• can now check M[0,j] = x (if j < n)
• if not, we can move onto the next row

– x cannot be anywhere in the row if it‘s not at M[i,j]
– set i = i + 1

Process continues in each row thereafter...
CSE 331 Spring 2021 17

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x ≤ M[i,j] ≤ M[i+1,j] since columns are sorted
– and M[i+1,j] ≤ M[i +1,j+1], .., M[i +1,n-1] since rows are sorted
– so we get x ≤ M[i +1,j], .., M[i +1,n-1]

CSE 331 Spring 2021 18

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– decrease j until it holds again...

• when have we seen this before?
• initialization

CSE 331 Spring 2021 19

i

j

Sorted Matrix Search Code

• Make progress by setting i = i + 1
• When i increases, the invariant may be broken

– we have x <= M[i +1,j], .., M[i +1,n-1]
– may need to restore invariant for M[i,0], ..., M[i,j-1] < x
– could copy and paste the same loop

• or you can do it with one copy

CSE 331 Spring 2021 20

i

j

Don’t try this at home!

Sorted Matrix Search Code

int i = 0, j = n;
[move j left]

{{ Inv: M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

i = i + 1;
[move j left]

}

CSE 331 Spring 2021 21

int i = 0, j = n;
while (i != n) {

[move j left]

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
i = i + 1;

}

instead of

we can write

Sorted Matrix Search Code

int i = 0;
int j = n;

while (i != n) {

{{ Inv: x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])

j = j – 1;

{{ M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i,j])

return true;
i = i + 1;

}
return false;

CSE 331 Spring 2021 22

i

j

Sorted Matrix Search Code

int i = 0;
int j = n;

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (i != n) {

{{ Inv: x not in M[k,l] for k < i and x ≤ M[i,j], ..., M[i,n-1] }}
while (j > 0 && x <= M[i,j-1])

j = j – 1;

{{ x not in M[k,l] for k < i and M[i,0], ..., M[i,j-1] < x ≤ M[i,j], ..., M[i,n-1] }}
if (j < n && x == M[i,j])

return true;
i = i + 1;

}
return false;

CSE 331 Spring 2021 23

i

j

Reasoning Summary

Reasoning Summary

• Checking correctness can be a mechanical process
– using forward or backward reasoning

• This requires that loop invariants are provided
– those cannot be produced automatically

• As long as you document your loop invariants,
it should not be too hard for someone else to review your code

CSE 331 Spring 2021 25

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

{{ Inv: printed all the strings seen so far }}
for (String s : L)
System.out.println(s);

CSE 331 Spring 2021 26

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

// Print the strings in L, one per line.
for (String s : L)
System.out.println(s);

CSE 331 Spring 2021 27

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

{{ Inv: B has 2*x + 1 for each element x removed so far }}
for (int x : A)
B.add(2*x + 1);

CSE 331 Spring 2021 28

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops:

// Set B = 2*A + 1 (element-wise)
for (int x : A)
B.add(2*x + 1);

CSE 331 Spring 2021 29

Documenting Loop Invariants

• Write down loop invariants for all non-trivial code

• They are often best avoided for “for each” loops.

• Invariants are more helpful when a variable incorporates
information from multiple iterations
– e.g., {{ s = A[0] + … + A[i-1] }}

• Use your best judgement!

CSE 331 Spring 2021 30

Reasoning Summary

• You can check correctness by reasoning alone

• Correctness: tools, inspection, testing
– reasoning through your own code
– do code reviews

• Practice!
– essential skill for professional programmers

CSE 331 Spring 2021 31

Reasoning Summary

• You will eventually do this in your head for most code

• Formalism remains useful
– especially tricky problems
– interview questions (often tricky)

• see last example…

CSE 331 Spring 2021 32

Next Topic…

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

34CSE 331 Spring 2021

One Solution

int maxLoc(int[] arr, int n) {
int maxIndex = 0;
int maxValue = arr[0];
// Inv: maxValue = max of arr[0] .. arr[i-1] and
// maxValue = arr[maxIndex]
for (int i = 1; i < n; i++) {
if (arr[i] > maxValue) {
maxIndex = i;
maxValue = arr[i];

}
}
return maxIndex;

}
35CSE 331 Spring 2021

What if n = 0?
What if n > arr.length?
What if there are two maximums?

Is this code correct?

A Problem

“Complete this method such that it returns the location of the largest
value in the first n elements of the array arr.”

int maxLoc(int[] arr, int n) {
...

}

Could we write a specification so that this is a correct solution?
– throw IllegalArgumentException if n <= 0
– throw ArrayOutOfBoundsException if n > arr.length
– return smallest index achieving maximum

36CSE 331 Spring 2021

Morals
• You can all write the code correctly

• Writing the specification was harder than the code
– multiple choices for the “right” specification

• must carefully think through corner cases
– once the specification is chosen, code is straightforward
– (both of those will be recurrent themes)

• Some math (e.g. “if n <= 0”) often shows up in specifications
– English (“if n is less or equal to than 0”) is often worse

37CSE 331 Spring 2021

How to Check Correctness
• Step 1: need a specification for the function

– can’t argue correctness if we don’t know what it should do
– surprisingly difficult to write!

• Step 2: determine whether the code meets the specification
– apply reasoning
– usually easy with the tools we learned

38CSE 331 Spring 2021

