CSE 331
 Software Design \& Implementation

James Wilcox \& Kevin Zatloukal
Fall 2022
Lecture 1 - Reasoning About Straight-Line Code

Motivation for Reasoning

- Want a way to determine correctness without running the code
- Most important part of the correctness techniques
- tools, inspection, testing
- You need a way to do this in interviews
- key reason why coding interviews are done without computers
- This is not easy

Our Approach

- We will learn a set of formal tools for proving correctness
- (later, this will also allow us to generate the code)
- Most professionals can do reasoning like this in their head
- most do an informal version of what we will see
- eventually, it will be the same for you
- Formal version has key advantages
- teachable
- mechanical (no intuition or creativity required)
- necessary for hard problems
- we turn to formal tools when problems get too hard

Formal Reasoning

- Invented by Robert Floyd and Sir Anthony Hoare
- Floyd won the Turing award in 1978
- Hoare won the Turing award in 1980

Robert Floyd

Tony Hoare

Terminology of Floyd Logic

- The program state is the values of all the (relevant) variables
- An assertion is a true / false claim (proposition) about the state at a given point during execution (e.g., on line 39)
- An assertion holds for a program state if the claim is true when the variables have those values
- An assertion before the code is a precondition
- these represent assumptions about when that code is used
- An assertion after the code is a postcondition
- these represent what we want the code to accomplish

Hoare Triples

- A Hoare triple is two assertions and one piece of code:
$\{P\} S\{Q\}$
- P the precondition
- S the code
- Q the postcondition

code is correct iff triple is valid
- A Hoare triple $\{P\} S\{Q\}$ is called valid if:
- in any state where P holds, executing S produces a state where Q holds
- i.e., if P is true before S, then Q must be true after it
- otherwise, the triple is called invalid

Notation

- Floyd logic writes assertions in $\{.$.
- since Java code also has $\{.$.$\} , I will use \{\{\ldots\}\}$
- e.g., $\{\{\mathrm{w}>=1\}\} \mathbf{x}=2$ * w ; $\{\{\mathrm{x}>=2\}\}$
- Assertions are math / logic not Java
- you can use the usual math notation
- (e.g., = instead of $==$ for equals)
- purpose is communication with other humans (not computers)
- we will need and, or, not as well
- can also write use \wedge (and) \vee (or) etc.
- The Java language also has assertions (assert statements)
- throws an exception if the condition does not evaluate true
- we will discuss these more later in the course

Example 1

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$
\{\{x!=0\}\} y=x * x ;\{\{y>0\}\}
$$

Example 1

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$
\{\{x!=0\}\} y=x * x ;\{\{y>0\}\}
$$

Valid

- \mathbf{y} could only be zero if \mathbf{x} were zero (which it isn't)

Example 2

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$
\{\{z!=1\}\} y=z * z ;\{\{y!=z\}\}
$$

Example 2

Is the following Hoare triple valid or invalid?

- assume all variables are integers and there is no overflow

$$
\{\{z!=1\}\} y=z * z ;\{\{y!=z\}\}
$$

Invalid

- counterexample: $\mathbf{z}=0$

Checking Validity

- So far: decided if a Hoare triple is valid by ... hard thinking
- Soon: mechanical process for reasoning about
- assignment statements
- conditionals
- [next lecture] loops
- (all code can be understood in terms of those 3 elements)
- Can use those to check correctness in a "turn the crank" manner
- Next: a way to compare different assertions
- useful, e.g., to compare possible preconditions

Weaker vs. Stronger Assertions

If P1 implies P2 (written P1 $\Rightarrow \mathrm{P} 2$), then:

- P 1 is stronger than P 2
- P 2 is weaker than P 1

Whenever P1 holds, P2 also holds

- So it is more (or at least as) "difficult" to satisfy P1
- the program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it is a stronger set of requirements on the program state
- P1 gives you more information about the state than P2

Examples

- $\mathbf{x}=17$ is stronger than $\mathbf{x}>0$
- \mathbf{x} is prime is neither stronger nor weaker than \mathbf{x} is odd
- \mathbf{x} is prime and $\mathbf{x}>2$ is stronger than \mathbf{x} is odd

Floyd Logic Facts

- Suppose $\{P\} S\{Q\}$ is valid.
- If P1 is stronger than P, then $\{P 1\} S\{Q\}$ is valid.
- If Q1 is weaker than Q, then $\{P\} S\{Q 1\}$ is valid.
- Example:
- Suppose P is $x>=0$ and $P 1$ is $x>0$
- Suppose Q is $y>0$ and $Q 1$ is $y>=0$
- Since $\{\{x>=0\}\} y=x+1\{\{y>0\}\}$ is valid, $\{\{x>0\}\} y=x+1\{\{y>=0\}\}$ is also valid

Floyd Logic Facts

- Suppose $\{P\} S\{Q\}$ is valid.
- If P1 is stronger than P, then $\{P 1\} S\{Q\}$ is valid.
- If Q1 is weaker than Q, then $\{P\} S\{Q 1\}$ is valid.
- Key points:
- always okay to strengthen a precondition
- always okay to weaken a postcondition

Floyd Logic Facts

- When is $\{P\} ;\{Q\}$ is valid?
- with no code in between
- Valid if any state satisfying P also satisfies Q
- I.e., if P is stronger than Q

Forward \& Backward Reasoning

Example of Forward Reasoning

```
Work forward from the precondition
{{w>0 }}
    x = 17;
{{__}}
    y = 42;
{{___}}
    z = w + x + y;
{{___}}
```


Example of Forward Reasoning

Work forward from the precondition

```
{{w>0 }}
    x = 17;
{{ w>0 and x=17 }}
    y = 42;
{{___}}
    z = w + x + y;
{{___}}
```


Example of Forward Reasoning

Work forward from the precondition

$$
\begin{aligned}
& \{\{\mathrm{w}>0\}\} \\
& \mathbf{x}=17 \text {; } \\
& \{\{\mathrm{w}>0 \text { and } \mathrm{x}=17 \text { \}\} } \\
& \mathrm{y}=42 \text {; } \\
& \{\{w>0 \text { and } x=17 \text { and } y=42\}\} \\
& \mathbf{z}=\mathbf{w}+\mathbf{x}+\mathrm{y} \text {; } \\
& \{\{\ldots
\end{aligned}
$$

Example of Forward Reasoning

Work forward from the precondition

$$
\begin{gathered}
\{\{w>0\}\} \\
x=17 ;
\end{gathered}
$$

$\{\{\mathrm{w}>0$ and $\mathrm{x}=17$ \}\}

$$
\mathrm{y}=42 \text {; }
$$

$$
\{\{w>0 \text { and } x=17 \text { and } y=42\}\}
$$

$$
z=w+x+y ;
$$

$\{\{\mathrm{w}>0$ and $\mathrm{x}=17$ and $\mathrm{y}=42$ and $\mathrm{z}=\mathrm{w}+\mathrm{x}+\mathrm{y}\}\}$

Example of Forward Reasoning

Work forward from the precondition

$$
\begin{gathered}
\{\{w>0\}\} \\
x=17 ;
\end{gathered}
$$

$\{\{\mathrm{w}>0$ and $\mathrm{x}=17$ \}\}

$$
\mathrm{y}=42 \text {; }
$$

$$
\{\{w>0 \text { and } x=17 \text { and } y=42\}\}
$$

$$
z=w+x+y ;
$$

$\{\{w>0$ and $x=17$ and $y=42$ and $z=w+59\}\}$

Forward Reasoning

- Start with the given precondition
- Fill in the strongest postcondition
- For an assignment, $\mathbf{x}=\mathbf{y} \ldots$
- add the fact " $x=y$ " to what is known
- important subtleties here... (more on those later)
- Later: if statements and loops...

Example of Backward Reasoning

Work backward from the desired postcondition\}\}

$$
y=42 ;
$$

$$
\{\{.
$$

$$
\text { . }\}\}
$$

$$
z=w+x+y ;
$$

$$
\{\{z<0\}\}
$$

```
\{\{__ \}\}
\{\{__ \}\}
    x = 17;
    x = 17;
\{\{
\{\{

\section*{Example of Backward Reasoning}

Work backward from the desired postcondition
\[
\begin{aligned}
& \left\{\left\{\begin{array}{l}
\quad \\
\mathbf{x}=17 ; \\
\{\{ \\
y=42 ; \\
\{\{w+x+y<0\}\} \\
z=w+x+y ; \\
\{\{z<0\}\}
\end{array}\right.\right.
\end{aligned}
\]

\section*{Example of Backward Reasoning}

Work backward from the desired postcondition
\[
\begin{aligned}
& \{\{ \\
& \mathbf{x}=17 ; \\
& \{\{w+x+42<0\}\} \\
& \mathbf{y}=42 ; \\
& \{\{w+x+y<0\}\} \\
& z=w+x+y ; \\
& \{\{z<0\}\}
\end{aligned}
\]

\section*{Example of Backward Reasoning}

Work backward from the desired postcondition
\[
\begin{aligned}
& \{\{w+17+42<0\}\} \\
& \mathbf{x}=17 ; \\
& \{\{w+x+42<0\}\} \\
& y=42 ; \\
& \{\{w+x+y<0\}\} \\
& z=w+x+y ; \\
& \{\{z<0\}\}
\end{aligned}
\]

\section*{Backward Reasoning}
- Start with the required postcondition
- Fill in the weakest precondition
- For an assignment, \(\mathbf{x}=\mathbf{y}\) :
- just replace " \(x\) " with " \(y\) " in the postcondition
- if the condition using " \(y\) " holds beforehand, then the condition with " \(x\) " will afterward since \(x=y\) then
- Later: if statements and loops...

\section*{Correctness by Forward Reasoning}

Use forward reasoning to determine if this code is correct:
\[
\begin{aligned}
\{\{w & >0\}\} \\
x & =17 ; \\
y & =42 ; \\
z & =w+x+y ; \\
\{\{z & >50\}\}
\end{aligned}
\]

\section*{Example of Forward Reasoning}
```

$\{\{\mathrm{w}>0\}\}$
$\mathbf{x}=17$;

$$
\{\{w>0 \text { and } x=17\}\}
$$

\{\{ w > 0 and $\mathrm{x}=17$ \}\}

$$
\mathrm{y}=42 \text {; }
$$

 \(\mathrm{y}=42\);
 $$
\{\{w>0 \text { and } x=17 \text { and } y=42\}\}
$$

\{\{ $w>0$ and $x=17$ and $y=42\}\}$

$$
z=w+x+y
$$

 \(z=w+x+y ;\)
 $$
\{\{w>0 \text { and } x=17 \text { and } y=42 \text { and } z=w+59\}\}]
$$

$\{\{w>0$ and $x=17$ and $y=42$ and $z=w+59\}\}$]

$$
\{\{z>50\}\}
$$

$\{\{z>50\}\}$

$$
\begin{gathered}
\{\{\mathrm{w}>0\}\} \\
\mathbf{x}=17
\end{gathered}
$$

```

Do the facts that are always true imply the facts we need?
I.e., is the bottom statement weaker than the top one?
(Recall that weakening the postcondition is always okay.)

\section*{Correctness by Backward Reasoning}

Use backward reasoning to determine if this code is correct:
\[
\begin{aligned}
\{\{w & <-60\}\} \\
\mathbf{x} & =17 ; \\
\mathbf{y} & =42 ; \\
z & =w+x+y ; \\
\{\{z & <0\}\}
\end{aligned}
\]

\section*{Correctness by Backward Reasoning}

Use backward reasoning to determine if this code is correct:
```

{{ w < -60 }}
{{w+17+42<0}} \Leftrightarrow{{w<-59}}
x = 17;
{{w+x+42<0}} (Recall that strengthening the precondition is always okay.)
y = 42;
{{w+x+y<0 }}
z = w + x + y;
{{z<0}}

```

\section*{Combining Forward \& Backward}

It is okay to use both types of reasoning
- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:
```

{{ P }}
S1
S2
{{ Q }}

```

\section*{Combining Forward \& Backward}

It is okay to use both types of reasoning
- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:
```

{{ P }}
S1
{{ P1 }}
S2
{{Q}}

```

\section*{Combining Forward \& Backward}

Reasoning in either direction gives valid assertions
Just need to check adjacent assertions:
- top assertion must imply bottom one
```

