CSE 331 Software Design & Implementation

James Wilcox & Kevin Zatloukal Fall 2022

Lecture 1 – Reasoning About Straight-Line Code

Motivation for Reasoning

- Want a way to determine correctness without running the code
- Most important part of the correctness techniques
 - tools, inspection, testing
- You need a way to do this in interviews
 - key reason why coding interviews are done without computers
- This is not easy

Our Approach

- We will learn a set of formal tools for proving correctness
 - (later, this will also allow us to generate the code)
- Most professionals can do reasoning like this in their head
 - most do an informal version of what we will see
 - eventually, it will be the same for you
- Formal version has key advantages
 - teachable
 - mechanical (no intuition or creativity required)
 - necessary for hard problems
 - we turn to formal tools when problems get too hard

Formal Reasoning

- Invented by Robert Floyd and Sir Anthony Hoare
 - Floyd won the Turing award in 1978
 - Hoare won the Turing award in 1980

Robert Floyd

Tony Hoare

Terminology of Floyd Logic

- The program state is the values of all the (relevant) variables
- An assertion is a true / false claim (proposition) about the state at a given point during execution (e.g., on line 39)
- An assertion holds for a program state if the claim is true when the variables have those values

- An assertion before the code is a precondition
 - these represent assumptions about when that code is used
- An assertion after the code is a postcondition
 - these represent what we want the code to accomplish

Hoare Triples

A Hoare triple is two assertions and one piece of code:

- P the precondition
- S the code
- Q the postcondition

code is correct iff triple is valid

- A Hoare triple { P } S { Q } is called valid if:
 - in any state where P holds,
 executing S produces a state where Q holds
 - i.e., if P is true before S, then Q must be true after it
 - otherwise, the triple is called invalid

Notation

- Floyd logic writes assertions in {..}
 - since Java code also has {..}, I will use {{...}}
 - $\text{ e.g., } \{\{ w \ge 1 \}\} x = 2 * w; \{\{ x \ge 2 \}\}$
- Assertions are math / logic not Java
 - you can use the usual math notation
 - (e.g., = instead of == for equals)
 - purpose is communication with other humans (not computers)
 - we will need and, or, not as well
 - can also write use ∧ (and) ∨ (or) etc.
- The Java language also has assertions (assert statements)
 - throws an exception if the condition does not evaluate true
 - we will discuss these more later in the course

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{x != 0\}\}\ y = x*x; \{\{y > 0\}\}$$

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{x \mid = 0\}\}\ y = x*x; \{\{y > 0\}\}\$$

Valid

y could only be zero if x were zero (which it isn't)

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{z != 1\}\}\ y = z*z; \{\{y != z\}\}$$

Is the following Hoare triple valid or invalid?

assume all variables are integers and there is no overflow

$$\{\{z != 1\}\}\ y = z*z; \{\{y != z\}\}$$

Invalid

• counterexample: z = 0

Checking Validity

- So far: decided if a Hoare triple is valid by ... hard thinking
- Soon: mechanical process for reasoning about
 - assignment statements
 - conditionals
 - [next lecture] loops
 - (all code can be understood in terms of those 3 elements)
- Can use those to check correctness in a "turn the crank" manner
- Next: a way to compare different assertions
 - useful, e.g., to compare possible preconditions

Weaker vs. Stronger Assertions

If P1 implies P2 (written P1 \Rightarrow P2), then:

- P1 is stronger than P2
- P2 is weaker than P1

Whenever P1 holds, P2 also holds

- So it is more (or at least as) "difficult" to satisfy P1
 - the program states where P1 holds are a subset of the program states where P2 holds
- So P1 puts more constraints on program states
- So it is a stronger set of requirements on the program state
 - P1 gives you more information about the state than P2

- x = 17 is stronger than x > 0
- x is prime is neither stronger nor weaker than x is odd
- x is prime and x > 2 is stronger than x is odd

Floyd Logic Facts

- Suppose {P} S {Q} is valid.
- If P1 is stronger than P, then {P1} S {Q} is valid.
- If Q1 is weaker than Q,
 then {P} S {Q1} is valid.

- Suppose P is $x \ge 0$ and P1 is $x \ge 0$
- Suppose Q is y > 0 and Q1 is y >= 0
- Since $\{\{x \ge 0\}\} y = x+1 \{\{y \ge 0\}\}$ is valid, $\{\{x \ge 0\}\} y = x+1 \{\{y \ge 0\}\}$ is also valid

Floyd Logic Facts

- Suppose {P} S {Q} is valid.
- If P1 is stronger than P,
 then {P1} S {Q} is valid.
- If Q1 is weaker than Q,
 then {P} S {Q1} is valid.

- always okay to strengthen a precondition
- always okay to weaken a postcondition

Floyd Logic Facts

- When is {P}; {Q} is valid?
 - with no code in between

- Valid if any state satisfying P also satisfies Q
- I.e., if P is **stronger** than Q

Forward & Backward Reasoning

```
\{\{w > 0\}\}\
\mathbf{x} = 17;
\{\{w > 0 \text{ and } x = 17\}\}\
\mathbf{y} = 42;
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42\}\}\
\mathbf{z} = \mathbf{w} + \mathbf{x} + \mathbf{y};
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42 \text{ and } z = w + x + y\}\}
```

```
\{\{w > 0\}\}\
\mathbf{x} = 17;
\{\{w > 0 \text{ and } x = 17\}\}\
\mathbf{y} = 42;
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42\}\}\
\mathbf{z} = \mathbf{w} + \mathbf{x} + \mathbf{y};
\{\{w > 0 \text{ and } x = 17 \text{ and } y = 42 \text{ and } z = w + 59}\}\}
```

Forward Reasoning

- Start with the given precondition
- Fill in the strongest postcondition
- For an assignment, x = y...
 - add the fact "x = y" to what is known
 - important <u>subtleties</u> here... (more on those later)
- Later: if statements and loops...

```
 \{\{w + 17 + 42 < 0\}\} 
 x = 17; 
 \{\{w + x + 42 < 0\}\} 
 y = 42; 
 \{\{w + x + y < 0\}\} 
 z = w + x + y; 
 \{\{z < 0\}\}
```

Backward Reasoning

- Start with the required postcondition
- Fill in the weakest precondition
- For an assignment, x = y:
 - just replace "x" with "y" in the postcondition
 - if the condition using "y" holds beforehand, then the condition with "x" will afterward since x = y then
- Later: if statements and loops...

Correctness by Forward Reasoning

Use forward reasoning to determine if this code is correct:

```
\{\{ w > 0 \}\}\
x = 17;
y = 42;
z = w + x + y;
\{\{ z > 50 \}\}
```

```
{{ w > 0 }}

x = 17;

{{ w > 0 and x=17 }}

y = 42;

{{ w > 0 and x=17 and y=42 }}

z = w + x + y;

{{ w > 0 and x=17 and y=42 and z = w + 59 }}

{{ z > 50 }}
```

Do the facts that are always true imply the facts we need?

I.e., is the bottom statement weaker than the top one?

(Recall that weakening the postcondition is always okay.)

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

```
\{\{ w < -60 \}\}

x = 17;

y = 42;

z = w + x + y;

\{\{ z < 0 \}\}
```

Correctness by Backward Reasoning

Use backward reasoning to determine if this code is correct:

Combining Forward & Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:

```
{{ P }}
s1
s2
{{ Q }}
```

Combining Forward & Backward

It is okay to use both types of reasoning

- Reason forward from precondition
- Reason backward from postcondition

Will meet in the middle:

```
{{ P}}
s1
{{ P1}}
{{ Q1}}

Valid provided P1 implies Q1
s2
{{ Q}}
```

Combining Forward & Backward

Reasoning in either direction gives valid assertions

Just need to check adjacent assertions:

top assertion must imply bottom one