
CSE 331
Software Design & Implementation

James Wilcox & Kevin Zatloukal
Fall 2022

Abstract Data Types (ADTs)

Comparing specifications

• Occasionally, we need to compare different specification:
– comparing potential specifications of a new class
– comparing new version of a specification with old

• recall: most work is making changes to existing code

• For that, we often consider stronger and weaker specifications...

2CSE 331 Fall 2022

Satisfaction of a specification

Let M be an implementation and S a specification

M satisfies S if and only if
– for every input allowed by the spec precondition,

M produces an output allowed by the spec postcondition

If M does not satisfy S, either M or S (or both!) could be “wrong”
– “one person’s feature is another person’s bug.”

3CSE 331 Fall 2022

Stronger vs Weaker Specifications

• Definition 1: specification S2 is stronger than S1 iff
– for any implementation M: M satisfies S2 => M satisfies S1
– i.e., S2 is harder to satisfy

• Two specifications may be incomparable
– but we are usually choosing between stronger vs weaker

4CSE 331 Fall 2022

S2 S1 (satisfying implementations)

Stronger vs Weaker Specifications

• An implementation satisfying a stronger specification can be
used anywhere that a weaker specification is required
- can use a method satisfying S2 anywhere S1 is expected

Making changes to a specification...
• changing from S2 to S1 should not break implementation

– but it could break clients!
• changing from S1 to S2 should not break clients

– but it could break implementation

CSE 331 Fall 2022 5

S2 S1

Stronger vs Weaker Specifications

• Definition 2: specification S2 is stronger than S1 iff
– precondition of S2 is weaker than that of S1
– postcondition of S2 is stronger than that of S1

(on all inputs allowed by both)

• A stronger specification:
– is harder to satisfy
– gives more guarantees to the client

• A weaker specification:
– is easier to satisfy
– gives more freedom to the implementer

6CSE 331 Fall 2022

Q2 Q1

P2P1

Example 1 (stronger postcondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

7CSE 331 Fall 2022

Which is stronger?

Example 2 (weaker precondition)
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}
return -1;

}

• Specification A
– requires: value occurs in a
– returns: i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

8CSE 331 Fall 2022

Which is stronger?

Example 3
int find(int[] a, int value) {

for (int i=0; i<a.length; i++) {
if (a[i]==value)
return i;

}
return -1;

}

• Specification B
– requires: value occurs in a
– returns: smallest i such that a[i] = value

• Specification C
– returns: i such that a[i] = value, or -1 if value is not in a

9CSE 331 Fall 2022

Which is stronger?

Strengthening a specification

• Strengthen a specification by:
– Promising more (stronger postcondition):

• returns clause harder to satisfy
• effects clause harder to satisfy
• fewer objects in modifies clause
• more specific exceptions (subclasses)

– Asking less of client (weaker precondition)
• requires clause easier to satisfy

• Weaken a specification by:
– (Opposite of everything above)

10CSE 331 Fall 2022

“Strange” case: @throws

Compare:
S1:

@throws FooException if x<0
@return x+3

S2:
@return x+3

S3:
@requires x >= 0
@return x+3

• S1 & S2 are stronger than S3
• S1 & S2 are incomparable because they promise different,

incomparable things when x<0
CSE 331 Fall 2022 11

Which is better?

• Stronger does not always mean better!

• Weaker does not always mean better!

• Strength of specification trades off:
– usefulness to client
– ease of simple, efficient, correct implementation
– promotion of reuse and modularity
– clarity of specification itself

• “It depends”

CSE 331 Fall 2022 12

Warnings on Specifications

Specifications are also the products of human design, so...

• They will contain bugs
– (recall the central dogma of this course)

• Creating them requires judgement
– no mechanical way to produce good specs (or invariants)
– harder but good for job security

• Harder to fix the more people that use it
– Medusa effect: “turns to stone” a bit more with each look
– widely used parts become impossible to change

13CSE 331 Fall 2022

XKCD
1172

Back to Correctness…

Correctness Toolkit

• Learned forward and backward reasoning for
– assignment
– if statement
– while loop

• One missing element: function calls
– we needed specifications for that
– now we have them

CSE 331 Fall 2022 16

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Fall 2022 17

Forward

{{ P1 }}
c = f(a, b);

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Fall 2022 18

Forward

{{ P1 }}
c = f(a, b);

{{ P1 and R(a,b,c) }}

if P1 implies P(a,b)

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Fall 2022 19

Backward

c = f(a, b);
{{ Q }}

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Fall 2022 20

Backward

c = f(a, b);
{{ Q1 and Q2(a,b,c) }}

Reasoning about Function Calls
static int f(int a, int b) { … }

requires P(a,b) -- some assertion about a & b
returns R(a,b,c) -- some assertion about a, b, & c (returned)

CSE 331 Fall 2022 21

Backward

{{ Q1 and P(a,b) }}
c = f(a, b);

{{ Q1 and Q2(a,b,c) }}if R(a,b,c) implies Q2(a,b,c)

Importance of Specifications

Specifications are essential to correctness

They are also essential to changeability
• need to know what changes will break code using it

They are also essential to understandability
• need to tell readers what it is supposed to do

They are also essential to modularity
• need to tell clients what it will do so they can start building their

own parts of the system

CSE 331 Fall 2022 22

Reasoning about Objects

Procedural and data abstractions

Procedural abstraction:
– abstract from implementation details of procedures (methods)
– specification is the abstraction
– satisfy the specification with an implementation

Data abstraction:
– abstract from details of data representation
– way of thinking about programs and design

24CSE 331 Fall 2022

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Hard to always choose the right data structures ahead of time:
– hard to know what parts will be too slow
– programmers are “notoriously” bad at this (Liskov)

Need a way to make our data structures changeable
– have this for code now, but not yet for data

25CSE 331 Fall 2022

Abstract Data Types (ADTs)

26CSE 331 Fall 2022

An abstract data type defines a class
of abstract objects which is completely
characterized by the operations
available on those objects …

When a programmer makes use of an
abstract data object, they are
concerned only with the behavior
which that object exhibits but not with
any details of how that behavior is
achieved by means of an
implementation…

Programming with Abstract Data Types
by Barbara Liskov and Stephen Zilles

Why we need Data Abstractions (ADTs)

Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– one of the fundamental ideas of computer science
– reduces data abstraction to procedural abstraction

ADTs give us the freedom to change data structures later
– data structure details are hidden from the clients

Also critical for understandability and modularity

27CSE 331 Fall 2022

Outline

Previously looked at writing specifications for methods.
The situation gets more complex with object-oriented code...

This lecture:
1. What is an Abstract Data Type (ADT)?
2. How to write a specification for an ADT
3. Design methodology for ADTs

Next lecture(s):
• Documenting the implementation of an ADT
• Reasoning about the implementation of an ADT

28CSE 331 Fall 2022

ADTs in Java

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• details of data structures are hidden from the client
• client see only the operations that provided

30CSE 331 Fall 2022

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• hide details of data structures such as

class RightTriangle {
float base, altitude;

}

class RightTriangle {
float hypot, angle;

}

31CSE 331 Fall 2022

Think of each object as a mathematical triangle
Usable via a set of operations
create, getBase, getArea, …

Force clients to use operations to access data

Another Example

class Point { class Point {
float x; float r;
float y; float theta;

} }

Different representations of the same concept
– both classes implement the concept “2D point”

Goal of Point ADT is to express the sameness:
– clients should think in terms of the concept “2D point”
– work with objects via operations not the representation
– produces clients that can work with either representation

32CSE 331 Fall 2022

rest of
program

abstraction
barrier

Abstract data type = objects + operations

We call this an “abstraction barrier”
– a good thing to have and not cross (a.k.a. violate)
– prevents clients from depending on implementation details

clients implementation

33CSE 331 Fall 2022

Point
create

translate
scale

x,y

r,theta

Concept of 2D point, as an ADT
class Point {
// A 2D point exists in the plane, ...
public float x();
public float y();
public float r();
public float theta();

// ... can be created, ...
public Point(); // new point at (0,0)
public Point centroid(Set<Point> points);

// ... can be moved, ...
public void translate(float delta_x,

float delta_y);
public void scaleAndRotate(float delta_r,

float delta_theta);
}

34

Observers / Getters

Creators /
Producers

Mutators

CSE 331 Fall 2022

Specifying an ADT

Mutable

1. overview
2. abstract state
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state
3. creators
4. observers
5. producers
6. mutators

• Creators: return new ADT values (e.g., Java constructors)
• Observers / Getters: Return information about an ADT
• Producers: ADT operations that return new values
• Mutators: Modify a value of an ADT

CSE 331 Fall 2022 35

Specifying an ADT
Mutable

1. overview
2. abstract state
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state
3. creators
4. observers
5. producers
6. mutators

• No information about the implementation details
– latter called the “concrete representation”

• Note that Point has both field x and method x()
– appears since it is part of the “2D point” concept
– we are still able to change representations

CSE 331 Fall 2022 36

Specifying an ADT

• Need a way write specifications for these procedures
– need a vocabulary for talking about what the operations do

(other than referencing the actual implementation)

• Use “math” (when possible) not actual fields to describe the state
– abstract description of a state is called an abstract state
– describes what the state “means” not the implementation

• give clients an abstract way to think about the state
– each operation described in terms of “creating”, “observing”,

“producing”, or “mutating” the abstract state

• For familiar ideas from math (point, triangle, number, set, etc.),
we can use those concepts as our abstract state
– otherwise, we need to invent a concept for them

37CSE 331 Fall 2022

Poly, an immutable data type: overview
/**
* A Poly is an immutable polynomial with
* integer coefficients. A typical Poly is
* c0 + c1x + c2x2 + ...
*/
class Poly {

Overview: provide high level information about the type
– state if immutable (default not)
– define abstract states for use in operation specifications

• easy here, but sometimes difficult — always vital!
– give an example (reuse it in operation definitions)

38

Abstract state

CSE 331 Fall 2022

Poly: creators

// effects: makes a new Poly = 0
public Poly()

// effects: makes a new Poly = cxn

// throws: NegExponent if n < 0
public Poly(int c, int n)

Creators
– creates a new object

Note: Javadoc above omits many details...
– should be /** ... */ not // ...
– should be @spec.effects not effects

39CSE 331 Fall 2022

Poly: observers

// returns: the degree of this polynomial,
// i.e., the largest exponent with a
// non-zero coefficient.
// Returns 0 if this = 0.
public int degree()

// returns: the coefficient of the term
// of this polynomial whose exponent is d
// throws: NegExponent if d < 0
public int coeff(int d)

Observers
– obtains information about objects of that type

40CSE 331 Fall 2022

“this” means the
abstract state

Notes on observers

Observers
– obtains information about objects of that type

• Specification uses the abstract state from the overview

• Never modifies the abstract state

41CSE 331 Fall 2022

Poly: producers

// returns: this + q
public Poly add(Poly q)

// returns: this * q
public Poly mul(Poly q)

// returns: -this
public Poly negate()

Producers
– creates other objects of the same type

42CSE 331 Fall 2022

Notes on producers

Producers
– creates other objects of the same type

• Common in immutable types like java.lang.String
– String substring(int offset, int len)

• No side effects
– never modify the abstract state of existing objects

43CSE 331 Fall 2022

Poly, example

Poly x = new Poly(4, 3);
Poly y = new Poly(5, 3);
Poly z = x.add(y);

System.out.println(z.coeff(3)); // prints 9

44CSE 331 Fall 2022

IntSet, a mutable datatype:
overview and creator

// Overview: An IntSet is a mutable,
// unbounded set of integers. A typical
// IntSet is { x1, ..., xn }.
class IntSet {

// effects: makes a new IntSet = {}
public IntSet()

(Note: Javadoc is highly simplified...)

45CSE 331 Fall 2022

IntSet: observers

// returns: true if and only if x in this set
public boolean contains(int x)

// returns: the cardinality of this set
public int size()

// returns: some element of this set
// throws: EmptyException when size()==0
public int choose()

46CSE 331 Fall 2022

IntSet: mutators

// modifies: this
// effects: change this to this + {x}
public void add(int x)

// modifies: this
// effects: change this to this - {x}
public void remove(int x)

Mutators
– modify the abstract state of the object

47CSE 331 Fall 2022

Notes on mutators

Mutators
– modify the abstract state of the object

• Rarely modify anything (available to clients) other than this
– list this in modifies clause

• Typically have no return value
– “do one thing and do it well”
– (sometimes return “old” value that was replaced)

Mutable ADTs may have producers too, but that is less common

48CSE 331 Fall 2022

Is everything an ADT?

• Purpose of an ADT is to hide the representation details

• Some classes are not trying to hide their representation
– Example: Pair with fields first and second
– representation is very unlikely to change
– reasonable to expose every field via a method

• Some classes do not have a representation
– they are more “processes” than data
– Example: PrinterController with various print methods
– it may store data, but client does not need to think about it

49CSE 331 Fall 2022

