
CSE 331
Software Design & Implementation

James Wilcox & Kevin Zatloukal
Fall 2022

ADT Implementation: Abstraction Functions

Specifying an ADT

Mutable

1. overview
2. abstract state
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state
3. creators
4. observers
5. producers
6. mutators

• Creators: return new ADT values (e.g., Java constructors)
• Observers / Getters: Return information about an ADT
• Producers: ADT operations that return new values
• Mutators: Modify a value of an ADT

CSE 331 Fall 2022 2

Specifying an ADT

• Need a way write specifications for these procedures
– need a vocabulary for talking about what the operations do

(other than referencing the actual implementation)

• Use “math” (when possible) not actual fields to describe the state
– abstract description of a state is called an abstract state
– describes what the state “means” not the implementation

• give clients an abstract way to think about the state
– each operation described in terms of “creating”, “observing”,

“producing”, or “mutating” the abstract state

• For familiar ideas from math (point, triangle, number, set, etc.),
we can use those concepts as our abstract state
– otherwise, we need to invent a concept for them

3CSE 331 Fall 2022

Specifying an ADT

Mutable

1. overview
2. abstract state
3. creators
4. observers
5. producers (rare)
6. mutators

Immutable

1. overview
2. abstract state
3. creators
4. observers
5. producers
6. mutators

CSE 331 Fall 2022 4

Described in terms of how they change the abstract state
– abstract description of what the object means

– difficult (unless concept is already familiar) but vital
– specs have no information about concrete representation

• leaves us free to change those in the future

Poly, an immutable data type: overview
/**
* A Poly is an immutable polynomial with
* integer coefficients. A typical Poly is
* c0 + c1x + c2x2 + ...
*/
class Poly {

Overview: provide high level information about the type
– state if immutable (default not)
– define abstract states for use in operation specifications

• easy here, but sometimes difficult — always vital!
– give an example (reuse it in operation definitions)

5

Abstract state

CSE 331 Fall 2022

Poly: creators

// effects: makes a new Poly = 0
public Poly()

// effects: makes a new Poly = cxn

// throws: NegExponent if n < 0
public Poly(int c, int n)

Creators
– creates a new object

Note: Javadoc above omits many details...
– should be /** ... */ not // ...
– should be @spec.effects not effects

6CSE 331 Fall 2022

Poly: observers

// returns: the degree of this polynomial,
// i.e., the largest exponent with a
// non-zero coefficient.
// Returns 0 if this = 0.
public int degree()

// returns: the coefficient of the term
// of this polynomial whose exponent is d
// throws: NegExponent if d < 0
public int coeff(int d)

Observers
– obtains information about objects of that type

7CSE 331 Fall 2022

“this” means the
abstract state

Notes on observers

Observers
– obtains information about objects of that type

• Specification uses the abstract state from the overview

• Never modifies the abstract state

8CSE 331 Fall 2022

Poly: producers

// returns: this + q
public Poly add(Poly q)

// returns: this * q
public Poly mul(Poly q)

// returns: -this
public Poly negate()

Producers
– creates other objects of the same type

9CSE 331 Fall 2022

Notes on producers

Producers
– creates other objects of the same type

• Common in immutable types like java.lang.String
– String substring(int offset, int len)

• No side effects
– never modify the abstract state of existing objects

10CSE 331 Fall 2022

IntSet, a mutable datatype:
overview and creator

// Overview: An IntSet is a mutable,
// unbounded set of integers. A typical
// IntSet is { x1, ..., xn }.
class IntSet {

// effects: makes a new IntSet = {}
public IntSet()

(Note: Javadoc is highly simplified...)

11CSE 331 Fall 2022

IntSet: observers

// returns: true if and only if x in this set
public boolean contains(int x)

// returns: the cardinality of this set
public int size()

// returns: some element of this set
// throws: EmptyException when size()==0
public int choose()

12CSE 331 Fall 2022

IntSet: mutators

// modifies: this
// effects: change this to this + {x}
public void add(int x)

// modifies: this
// effects: change this to this - {x}
public void remove(int x)

Mutators
– modify the abstract state of the object

13CSE 331 Fall 2022

Notes on mutators

Mutators
– modify the abstract state of the object

• Rarely modify anything (available to clients) other than this
– list this in modifies clause

• Typically have no return value
– “do one thing and do it well”
– (sometimes return “old” value that was replaced)

Mutable ADTs may have producers too, but that is less common

14CSE 331 Fall 2022

Is everything an ADT?

• Purpose of an ADT is to hide the representation details

• Some classes are not trying to hide their representation
– Example: Pair with fields first and second
– representation is very unlikely to change
– reasonable to expose every field via a method

• Some classes do not have a representation
– they are more “processes” than data
– Example: PrinterController with various print methods
– it may store data, but client does not need to think about it

15CSE 331 Fall 2022

Implementing a Data Abstraction (ADT)

To implement an ADT:
– select the representation of instances
– implement operations using the chosen representation

Choose a representation so that:
– it is possible to implement required operations
– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later
• almost always better to start simple

Use reasoning to verify the operations are correct
– specs are written in terms of abstract states not actual fields
– need a new tool for this...

16CSE 331 Fall 2022

Data abstraction outline

CSE 331 Fall 2022 17

Abstract
States

Fields in our
Java class

Abstraction Barrier

ADT specification ADT implementation

Abstraction Function (AF):
mapping between ADT

implementation and specification

Connecting implementations to specs
For implementers / debuggers / maintainers of the implementation:

Abstraction Function: maps Object → abstract state
– says what the data structure means in vocabulary of the ADT
– maps the fields to the abstract state they represent

• can check that the abstract value after each method meets
the postcondition described in the specification

Representation Invariant: (next lecture)

18CSE 331 Fall 2022

Example: Circle

/** Represents a mutable circle in the plane. For example,
* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Abstraction function:
// AF(this) = a circle with center at this.center
// and radius this.rad
private Point center;
private double rad;

// ...

}

19CSE 331 Fall 2022

Example: Circle 2

/** Represents a mutable circle in the plane. For example,
* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Abstraction function:
// AF(this) = a circle with center at this.center
// and radius this.center.distanceTo(this.edge)
private Point center, edge;

// ...

}

20CSE 331 Fall 2022

Example: Polynomial

/** An immutable polynomial with integer coefficients.
* Examples include 0, 2x, and 3x^2 + 5x + 6. */

public class IntPoly {

// Abstraction function:
// AF(this) = sum of coeffs[i] * x^i
// for i = 0 .. coeffs.length-1
private final int[] coeffs;

// ...

}

21CSE 331 Fall 2022

Example: Polynomial 2

/** An immutable polynomial with integer coefficients.
* Examples include 0, 2x, and 3x^2 + 5x + 6. */

public class IntPoly {

// Abstraction function:
// AF(this) = sum of monomials in this.terms
private final LinkedList<IntTerm> terms;

// ...

}

22CSE 331 Fall 2022

Example: Stack

/** List that only allows insert/remove at right end. */
public class IntStack {

// AF(this) = vals[0..len-1]
private int[] vals;
private int len;

// ...

}

23CSE 331 Fall 2022

Example: Stack

// AF(this) = vals[0..len-1]
private int[] vals;
private int len;

// Creates an empty stack.
public IntStack() {
vals = new int[3];
start = len = 0;

}

24CSE 331 Fall 2022

AF(this) = vals[0..-1] = []

Example: Stack

// AF(this) = vals[0..len-1]
private int[] vals;
private int len;

// @return number of elements in the collection
public length() {
return len;

}

25CSE 331 Fall 2022

length of this = length of vals[0..len-1] = len

Example: Stack

// AF(this) = vals[0..len-1]
private int[] vals;
private int len;

// @modifies this
// @effects this = this + [value]
public push(int value) {
ensureEnoughSpace(len+1); // make sure vals[len] exists
vals[len] = value
len = len + 1;

}

26CSE 331 Fall 2022

AF(this) = vals[0 .. len -1]
= vals0 [0 .. len - 2] + [value]
= vals0 [0 .. len0 - 1] + [value]
= AF(this0) + [value]

Example: Stack

// AF(this) = vals[0..len-1]
private int[] vals;
private int len;

// @requires length > 0
// @modifies this
// @effects this = this[0..length-2]
public pop() {
...

}

27CSE 331 Fall 2022

talks about “this” not vals and
“length” not len

Example: Stack

// AF(this) = vals[0..len-1]
private int[] vals;
private int len;

// @requires length > 0
// @modifies this
// @effects this = this[0..length-2]
public pop() {
len = len - 1;

}

28CSE 331 Fall 2022

Example: Stack

// AF(this) = vals[0..len-1]
private int[] vals;
private int len;

// @requires length > 0
// @modifies this
// @effects this = this[0..length-2]
public pop() {

{{ length > 0 }}
len = len - 1;
{{ this = this0 [0 .. len0 - 2] }}

}

29CSE 331 Fall 2022

{{ len > 0 }}

{{ len0 > 0 and len = len0 - 1 }}

⇒ {{ AF(this) = vals[0 .. len - 1]
= vals[0 .. len0 - 2] }}

Summary: the abstraction function

• Purely conceptual (not a Java function)

• Allows us to check correctness
– use reasoning to show that the method leaves the abstract state

such that it satisfies the postcondition

30CSE 331 Fall 2022

