
CSE 331
Software Design & Implementation

James Wilcox & Kevin Zatloukal
Fall 2022

ADT Implementation: Representation Invariants

Specifying an ADT

Different types of methods:

1. creators
2. observers
3. producers
4. mutators (if mutable)

Described in terms of how they change the abstract state
– abstract description of what the object means

– difficult (unless concept is already familiar) but vital
– specs have no information about concrete representation

• leaves us free to change those in the future

CSE 331 Fall 2022 2

Implementing a Data Abstraction (ADT)

To implement an ADT:
– select the representation of instances
– implement operations in terms of that representation

Choose a representation so that:
– it is possible to implement required operations
– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later
• almost always better to start simple

Then use reasoning to verify the operations are correct
– two intellectual tools are helpful for this...

3CSE 331 Fall 2022

Data abstraction outline

CSE 331 Fall 2022 4

Abstract
States

Fields in our
Java class

Abstraction Barrier

ADT specification ADT implementation

Abstraction Function (AF):
mapping between ADT

implementation and specification

Last time: abstraction function

• Allows us to check correctness
– use reasoning to show that the method leaves the abstract state

such that it satisfies the postcondition

// AF(this) = vals[0..len-1]

// @requires length > 0

// @modifies this
// @effects this = this[0..length-2]

public void pop() {

{{ length > 0 }}
len = len – 1;

{{ this = thispre[0 .. lengthpre – 2] }}
}

CSE 331 Fall 2022

{{ len > 0 }}

{{ len = lenpre - 1 }}
⇒ {{ this = vals[0..len-1]

= vals[0..lenpre-2] }}

Data abstraction outline

CSE 331 Fall 2022 6

Abstract
States

Fields in our
Java class

Abstraction Barrier

Abstraction function (AF):
Relationship between ADT

specification and
implementation

Representation invariant (RI):
Relationship among

implementation fields

ADT specification ADT implementation

Connecting implementations to specs
For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean
– defines the set of valid concrete values
– must hold before and after any public method is called
– no object should ever violate the rep invariant

• such an object has no useful meaning

Abstraction Function: maps Object → abstract state
– says what the data structure means in vocabulary of the ADT
– only defined on objects meeting the rep invariant

7CSE 331 Fall 2022

Example: Circle

/** Represents a mutable circle in the plane. For example,
* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and rad > 0
private Point center;
private double rad;

// Abstraction function:
// AF(this) = a circle with center at this.center
// and radius this.rad

// ...
}

8CSE 331 Fall 2022

Example: Circle 2

/** Represents a mutable circle in the plane. For example,
* it can be a circle with center (0,0) and radius 1. */

public class Circle {

// Rep invariant: center != null and edge != null
// and !center.equals(edge)
private Point center, edge;

// Abstraction function:
// AF(this) = a circle with center at this.center
// and radius this.center.distanceTo(this.edge)

// ...
}

9CSE 331 Fall 2022

Example: Polynomial

/** An immutable polynomial with integer coefficients.
* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: coeffs != null
private final int[] coeffs;

// Abstraction function:
// AF(this) = sum of this.coeffs[i] * x^i
// for i = 0 .. this.coeffs.length

// ... coeff, degree, etc.

10CSE 331 Fall 2022

Example: Polynomial 2

/** An immutable polynomial with integer coefficients.
* Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

// Rep invariant: terms != null and
// no two terms have the same degree and
// terms is sorted in descending order by degree
private final LinkedList<IntTerm> terms;

// Abstraction function:
// AF(this) = sum of monomials in this.terms

// ... coeff, degree, etc.
11CSE 331 Fall 2022

Example: IntStack

/** List that only allows insert/remove at right end. */
public class IntStack {

// RI: vals != null and 0 <= len <= vals.length
// AF(this) = vals[0.. len-1]
private int[] vals;
private int len;

12CSE 331 Fall 2022

Another example

class Account {
private int balance;

// history of all transactions
private List<Transaction> transactions;
…

}

Implementation-related constraints:
• Transactions ≠ null
• No nulls in transactions

Real-world constraints:
• Balance = Σi transactions.get(i).amount
• Balance ≥ 0

CSE 331 Fall 2022 13

Defensive Programming with ADTs

Checking rep invariants

Should you write code to check that the rep invariant holds?

– Yes, if it’s inexpensive [depends on the invariant]

– Yes, for debugging [even when it’s expensive]

– Often hard to justify turning the checking off
• better argument is removing clutter (improve understandability)

– Some private methods must not check

A great debugging technique:
Design your code to catch bugs by implementing and using a
function to check the rep-invariant

15CSE 331 Fall 2022

Example: CharSet ADT

// Overview: A CharSet is a finite mutable set of Characters

// @effects: creates a fresh, empty CharSet
public CharSet() {…}

// @modifies: this
// @effects: this changed to this + {c}
public void insert(Character c) {…}

// @modifies: this
// @effects: this changed to this - {c}
public void delete(Character c) {…}

// @return: true iff c is in this set
public boolean member(Character c) {…}

// @return: cardinality of this set
public int size() {…}

16CSE 331 Fall 2022

Example: CharSet ADT

// Rep invariant: elts != null and
// elts has no nulls and no dups
// AF(this) = list of chars in elts
private List<Character> elts;

17CSE 331 Fall 2022

Checking the rep invariant
Rule of thumb: check on entry and on exit (why?)

public void delete(Character c) {
checkRep();
elts.remove(c); // removes 0 or 1 copies of c
checkRep();

}

// Verify that elts contains no nulls or dups
private void checkRep() {
for (int i = 0; i < elts.size(); i++) {
assert elts.get(i) != null;
assert elts.indexOf(elts.get(i)) == i;

}
}

18CSE 331 Fall 2022

Practice defensive programming

• Question is not: will you make mistakes? You will.
• Question is: will you catch those mistakes before users do?

• Write and incorporate code designed to catch the errors you make
– check rep invariant on entry and exit (of mutators)
– check preconditions (don’t trust other programmers)
– check postconditions (don’t trust yourself either)

• Checking the rep invariant helps discover errors while testing
• Reasoning about the rep invariant helps discover errors while coding

19CSE 331 Fall 2022

Practice defensive programming

• Checking pre- and post-conditions and rep invariants is one tip
• More of these in Effective Java

– first required reading (see calendar for items)

• Focus on defensive programming against subtle bugs
– obvious bugs (e.g., crashing every time) will be caught in testing
– subtle bugs that only occasionally cause problems can sneak out
– be especially defensive against (and scared of) these

20CSE 331 Fall 2022

Listing the elements of a CharSet

Consider adding the following method to CharSet

// returns: a List containing the members of this
public List<Character> getElts();

Consider this implementation:

public List<Character> getElts() { return elts; }

Does this implementation preserve the rep invariant?
Can’t say!

21CSE 331 Fall 2022

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();
Character a = new Character(’a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always bad
– can cause bugs that will be very hard to detect

• Rule #1: Don’t do it!
• Rule #2: If you do it, document it clearly and then feel guilty about it!

22CSE 331 Fall 2022

Avoiding representation exposure

• Understand what representation exposure is

• Design ADT implementations to make sure it doesn’t happen

• Treat rep exposure as a bug: fix your bugs
– absolutely must avoid in libraries with many clients
– can allow (but feel guilty) for code with few clients

• Test for it with adversarial clients:
– pass values to methods and then mutate them
– mutate values returned from methods

CSE 331 Fall 2022 23

private is not enough
• Making fields private does not suffice to prevent rep exposure

– see our example
– issue is aliasing of mutable data outside the abstraction

• So private is a hint to you: no aliases outside abstraction to
references to mutable data reachable from private fields

• Three general ways to avoid representation exposure…

CSE 331 Fall 2022 24

Avoiding rep exposure (way #1)

• One way to avoid rep exposure is to make copies of all data that
cross the abstraction barrier
– Copy in [parameters that become part of the implementation]
– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = new Point(s.x,s.y);
this.e = new Point(e.x,e.y);

}
public Point getStart() {

return new Point(this.s.x,this.s.y);
}
…

CSE 331 Fall 2022 25

Avoiding rep exposure (way #2)

• One way to avoid rep exposure is to exploit the immutability of
(other) ADTs the implementation uses
– aliasing is no problem if nobody can change data

• have to mutate the rep to break the rep invariant

• Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = s;
this.e = e;

}
public Point getStart() {

return this.s;
}
…

CSE 331 Fall 2022 26

Alternative #3

// returns: elts currently in the set
public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList:
Returns an unmodifiable view of the specified list. This method allows
modules to provide users with "read-only" access to internal lists. Query
operations on the returned list "read through" to the specified list, and
attempts to modify the returned list… result in an
UnsupportedOperationException.

CSE 331 Fall 2022 27

The good news

CSE 331 Fall 2022 28

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep
• cannot break the rep invariant

– (For long lists,) more efficient than copy out
– Uses standard libraries

The bad news

public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!
}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);
}

The two implementations do not do the same thing!
– both avoid allowing clients to break the rep invariant
– both return a list containing the elements

But consider: xs = s.getElts();
s.insert('a');
xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior
CSE 331 Fall 2022 29

Different specifications
Ambiguity of “returns a list containing the current set elements”

“returns a fresh mutable list containing the elements in the set
at the time of the call”

versus
“returns read-only access to a list that the ADT

continues to update to hold the current elements in the set”

A third spec weaker than both [but less simple and useful!]
“returns a list containing the current set elements. Behavior is

unspecified (!) if client attempts to mutate the list or
to access the list after the set’s elements are changed”

Also note: Version 2’s spec also makes changing the rep later harder
– only “simple” to implement with rep as a List

CSE 331 Fall 2022 30

Suggestions
Best options for implementing getElts()

• if O(n) time is acceptable for relevant use cases, copy the list
– safest option
– best option for changeability

• if O(1) time is required, then return an unmodifiable list
– prevents breaking rep invariant
– clearly document that behavior is unspecified after mutation
– ideally, write a your own unmodifiable view of the list

that throws an exception on all operations after mutation

• if O(1) time is required and there is no unmodifiable version and
you don’t have time to write one, expose rep and feel guilty

CSE 331 Fall 2022 31

