
CSE 331
Software Design & Implementation

James Wilcox & Kevin Zatloukal
Fall 2022
Testing

Representation exposure

Consider this client code (outside the CharSet implementation):
CharSet s = new CharSet();
Character a = new Character(’a’);
s.insert(a);
s.getElts().add(a);
s.delete(a);
if (s.member(a)) …

• Representation exposure is external access to the rep

• Representation exposure is almost always bad
– can cause bugs that will be very hard to detect

• Rule #1: Don’t do it!
• Rule #2: If you do it, document it clearly and then feel guilty about it!

2CSE 331 Fall 2022

private is not enough
• Making fields private does not suffice to prevent rep exposure

– see our example
– issue is aliasing of mutable data outside the abstraction

• So private is a hint to you: no aliases outside abstraction to
references to mutable data reachable from private fields

• Three general ways to avoid representation exposure…

CSE 331 Fall 2022 3

Avoiding rep exposure (way #1)

• One way to avoid rep exposure is to make copies of all data that
cross the abstraction barrier
– Copy in [parameters that become part of the implementation]
– Copy out [results that are part of the implementation]

• Examples of copying (assume Point is a mutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = new Point(s.x,s.y);
this.e = new Point(e.x,e.y);

}
public Point getStart() {

return new Point(this.s.x,this.s.y);
}
…

CSE 331 Fall 2022 4

Avoiding rep exposure (way #2)

• One way to avoid rep exposure is to exploit the immutability of
(other) ADTs the implementation uses
– aliasing is no problem if nobody can change data

• have to mutate the rep to break the rep invariant

• Examples (assuming Point is an immutable ADT):
class Line {

private Point s, e;
public Line(Point s, Point e) {

this.s = s;
this.e = e;

}
public Point getStart() {

return this.s;
}
…

CSE 331 Fall 2022 5

Alternative #3

// returns: elts currently in the set
public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!

}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

From the JavaDoc for Collections.unmodifiableList:
Returns an unmodifiable view of the specified list. This method allows
modules to provide users with "read-only" access to internal lists. Query
operations on the returned list "read through" to the specified list, and
attempts to modify the returned list… result in an
UnsupportedOperationException.

CSE 331 Fall 2022 6

The good news

CSE 331 Fall 2022 7

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);

}

– Clients cannot modify (mutate) the rep
• cannot break the rep invariant

– (For long lists,) more efficient than copy out
– Uses standard libraries

The bad news

public List<Character> getElts() { // version 1
return new ArrayList<Character>(elts);//copy out!
}

public List<Character> getElts() { // version 2
return Collections.unmodifiableList(elts);
}

The two implementations do not do the same thing!
– both avoid allowing clients to break the rep invariant
– both return a list containing the elements

But consider: xs = s.getElts();
s.insert('a');
xs.contains('a');

Version 2 is observing an exposed rep, leading to different behavior
CSE 331 Fall 2022 8

Different specifications
Ambiguity of “returns a list containing the current set elements”

“returns a fresh mutable list containing the elements in the set
at the time of the call”

versus
“returns read-only access to a list that the ADT

continues to update to hold the current elements in the set”

A third spec weaker than both [but less simple and useful!]
“returns a list containing the current set elements. Behavior is

unspecified (!) if client attempts to mutate the list or
to access the list after the set’s elements are changed”

Also note: Version 2’s spec also makes changing the rep later harder
– only “simple” to implement with rep as a List

CSE 331 Fall 2022 9

Suggestions
Best options for implementing getElts()

• if O(n) time is acceptable for relevant use cases, copy the list
– safest option
– best option for changeability

• if O(1) time is required, then return an unmodifiable list
– prevents breaking rep invariant
– clearly document that behavior is unspecified after mutation
– ideally, write a your own unmodifiable view of the list

that throws an exception on all operations after mutation

• if O(1) time is required and there is no unmodifiable version and
you don’t have time to write one, expose rep and feel guilty

CSE 331 Fall 2022 10

Testing

How do we ensure correctness?

Best practice: use three techniques

1. Tools
– e.g., type checking, @Override, libraries, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Each removes ~2/3 of bugs. Together >97%

CSE 331 Fall 2022 12

What can you learn from testing?

“Program testing can be used to show
the presence of bugs, but never to
show their absence!”

Edsgar Dijkstra
Notes on Structured Programming,

1970

Testing is essential but it is insufficient by itself

Only reasoning can prove there are no bugs. Yet...
13CSE 331 Fall 2022

How do we ensure correctness?

“Beware of bugs in the above code;
I have only proved it correct, not tried it.”

-Donald Knuth, 1977

Trying it is a surprisingly useful way to find mistakes!

No single activity or approach can guarantee correctness

We need tools and inspection and testing to ensure correctness

14CSE 331 Fall 2022

Why you will care about testing

In all likelihood, you will be expected to test your own code

• Industry-wide trend toward developers doing more testing
– 20 years ago, we had large test teams
– now, test teams are small to nonexistent

• Reasons for this change:
1. easy to update products after shipping (users are testers)
2. often lowered quality expectations (startups, games)

• some larger companies want to be more like startups

This has positive and negative effects…

CSE 331 Fall 2022 15

It’s hard to test your own code

Your psychology is fighting against you:
• confirmation bias

– tendency to avoid evidence that you’re wrong
• operant conditioning

– programmers get cookies when the code works
– testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning

16CSE 331 Fall 2022

Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 8 varieties total]:
– unit testing versus system / integration / end-to-end testing

• one module’s functionality versus pieces fitting together

– clear-box testing versus opaque-box / black-box testing
• did you look at the code before writing the test?

– specification testing versus implementation testing
• test only behavior guaranteed by specification or other

behavior expected for the implementation

CSE 331 Fall 2022 17

Unit Testing

• A unit test focuses on one class / module (or even less)
– could write a unit test for a single method

• Tests a single unit in isolation from all others

• Integration tests verify that the modules fit together properly
– usually don’t want these until the units are well tested

• i.e., unit tests come first

18CSE 331 Fall 2022

How is testing done?

Write the test
1) Choose input / configuration
2) Define the expected outcome

Run the test
3) Run with input and record the actual outcome
4) Compare actual outcome to expected outcome

19CSE 331 Fall 2022

What’s So Hard About Testing?

“Just try it and see if it works...”

// requires: 1 ≤ x,y,z ≤ 100,000
// returns: computes some f(x,y,z)
int func1(int x, int y, int z){…}

Exhaustive testing would require 1 quadrillion cases!
– impractical even for this trivially small problem

Key problem: choosing test suite
– Large/diverse enough to provide a useful amount of validation
– (Small enough to write in reasonable amount of time.)

• need to think through the expected outcome
• very few software projects have too many tests

20CSE 331 Fall 2022

Approach: Partition the Input Space

Ideal test suite:
Identify sets with “same behavior”

(actual and expected)
Test at least one input from each set

(we call this set a subdomain)

Two problems:

1. Notion of same behavior is subtle
• Naive approach: execution equivalence
• Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
• If we had it, we wouldn’t need to test
• Use heuristics to approximate cheaply

21CSE 331 Fall 2022

Naive Approach: Execution Equivalence

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < 0) return -x;
else return x;

}

All x < 0 are execution equivalent:
– Program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

22CSE 331 Fall 2022

Execution Equivalence Can Be Wrong

// returns: x < 0 => returns –x
// otherwise => returns x
int abs(int x) {

if (x < -2) return -x;
else return x;

}

{-3, 3} does not reveal the error!

Two possible executions: x < -2 and x >= -2

Three possible behaviors:
– x < -2 OK, x = -2 or x= -1 (BAD)
– x >= 0 OK

23CSE 331 Fall 2022

Revealing Subdomains

• A subdomain is a subset of possible inputs

• A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

• Need test at least one input from a revealing subdomain to find bug
– if you test one input from every revealing subdomain for E,

you are guaranteed to find the bug

• The trick is to guess revealing subdomains for the errors present
– even though your reasoning says your code is correct,

make educated guesses where the bugs might be

24CSE 331 Fall 2022

Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– can then take just one example from each subdomain

• Some heuristics are useful for choosing
subdomains...

CSE 331 Fall 2022 25

Heuristics for Designing Test Suites

A good heuristic gives:
– for all errors in some class of errors E:

high probability that some subdomain is revealing for E
– not an absurdly large number of subdomains

Different heuristics target different classes of errors
– in practice, combine multiple heuristics

• (we will see several)
– a way to think about and communicate your test choices

26CSE 331 Fall 2022

Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is opaque-box: specification visible, internals hidden

Example
// returns: a > b => returns a
// a < b => returns b
// a = b => returns a
int max(int a, int b) {…}

3 cases lead to 3 tests
(4, 3) => 4 (i.e. any input in the subdomain a > b)
(3, 4) => 4 (i.e. any input in the subdomain a < b)
(3, 3) => 3 (i.e. any input in the subdomain a = b)

27CSE 331 Fall 2022

Specification Testing: Advantages

Process is not influenced by component being tested
– avoids psychological biases we discussed earlier
– can only do this for your own code if you write tests first

Robust with respect to changes in implementation
– test data need not be changed when code is changed

Allows others to test the code (rare nowadays)

28CSE 331 Fall 2022

Heuristic: Clear-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– performance optimizations
– alternate algorithms for different cases

Example: abs from before (different behavior < 0 and >= 0)

// @return |x|
int abs(int x) {

if (x < 0) return -x;
else return x;

}

29CSE 331 Fall 2022

Clear-box Example
There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {
if (x % i == 0)
return false;

}
return true;

} else {
return primeTable[x];

}
}

30CSE 331 Fall 2022

Clear Box Testing: [Dis]Advantages

• Finds an important class of boundaries
– yields useful test cases
– wouldn’t know about primeTable otherwise

Disadvantage:
– buggy code tricks you into thinking it’s right once you look at it

• (confirmation bias)
– can end up with tests having same bugs as implementation
– so also write tests before looking at the code

31CSE 331 Fall 2022

Clear-box Example
There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

boolean isPrime(int x) {
if (x > CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {
if (x % i == 0)
return false;

}
return true;

} else {
return primeTable[x];

}
}

32CSE 331 Fall 2022

Where is the bug?

Heuristic: Boundary Cases

Create tests at the boundaries between subdomains

Edges of the “main” subdomains have a
high probability of revealing errors

– e.g., off-by-one bugs

Include one example on each side of the boundary

Also want to test the side edges of the subdomains…

33CSE 331 Fall 2022

Summary of Heuristics

Before you write the code (part of ”test-driven development”):
• split subdomains on boundaries appearing in the specification
• choose a test along both sides of each boundary

After you write the code:
• split further on boundaries appearing in the implementation

More next time…

On the other hand, don't confuse volume with quality of tests
• look for revealing subdomains
• want tests in every revealing subdomain not just lots of tests

34CSE 331 Fall 2022

Testing Tools

• Modern development ecosystems have built-in support for testing

• Your homework introduces you to Junit
– standard framework for testing in Java

• Continuous integration
– ensure tests pass before code is submitted

• You will see more sophisticated tools in industry
– libraries for creating mock implementations of other modules
– automated tools to test on every platform
– automated tools to find severe bugs (using AI)
– …

CSE 331 Fall 2022 35

