
CSE 331
Software Design & Implementation

James Wilcox & Kevin Zatloukal
Fall 2022

Modern Web GUIs



React

• Improve modularity by allowing custom tags

let app = (
<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• TitleBar and EditPane can be separate modules
– their HTML gets substituted in these positions

CSE 331 Fall 2022 2



React

• Custom tags implemented using classes

class TitleBar extends React.Component {

• Attributes (name=“My App”) passed in props arg

• Method render produces the HTML for component

• Framework joins all the HTML into one blob
– can update in a single call to innerHTML = …

CSE 331 Fall 2022 3



React Example

register-react/…

CSE 331 Fall 2022 4



React Components

• Each React component renders into HTML elements

let app = (

<div>
<TitleBar name=“My App”/>
<EditPane rows=“80” />

</div>);

• React components corresponds to portions of the document
– TitleBar is one subtree
– EditPane is another subtree
– App contains the two of those

CSE 331 Fall 2022 5



React State

• Last example was not dynamic
– there was no model!

• Components become dynamic by maintaining state
– stored in fields of this.state
– call this.setState({field: value}) to update

• React will respond by calling render again
– will automatically update the live HTML to match
– will only update the parts that changed

CSE 331 Fall 2022 6



Structure of Example React App

7

Quarter 
PickerApp

Class
Picker

State:
– quarter

Props:
– quarter

State:
– classes

quarter



Example 5

register-react2/…

CSE 331 Fall 2022 8



React State

• Custom tag also has its own events

• Updating data in a parent:
– sends parent component new data via event
– parent updates state with setState
– React calls parent’s render to get new HTML

• result can include new children
• result can include changes to child props

CSE 331 Fall 2022 9



Structure of Example React App

10

Quarter 
PickerApp

Class
Picker

State:
– quarter

onPick

Props:
– quarter

State:
– classes

quarter

onBack



Splitting the Model

• State should exist in the lowest common parent of 
all the components that need it
– sent down to children via props

• Children change it via events
– sent up to the parent so it can change its state

• Parent’s render creates new children with new props

CSE 331 Fall 2022 11



Remaining Problems

• Code is extremely verbose
– can be improved using Lambdas

• Code is not sufficiently modular
– one JS mixes data, display, interaction

• Too much work involved with laying out elements

• Poor tool support
– No compile-time types
– HTML is created in strings!

CSE 331 Fall 2022 12



Event Listener Gotchas

• Recall the issue with “this” in JavaScript.
– do not write onClick={this.handleClick}

• Three ways to do this properly:

1. onClick={(e) => this.handleClick(e)}

2. onClick={this.handleClick.bind(this)}

3. Make handleClick a field rather than a method:

handleClick: (e) => { … };

Then this.handleClick is okay.

CSE 331 Fall 2022 13



React setState Gotchas

• setState does not update state instantly:

// this.state.x is 2
this.setState({x: 3});
console.log(this.state.x); // still 2!

• Update occurs after the event finishes processing
– setState adds a new event to the queue
– work is performed when that event is processed

• React can batch together multiple updates

CSE 331 Fall 2022 14



Other React Gotchas

• State must store all data necessary to generate the 
exact UI on the screen
– react may call render at any time
– must produce identical UI

• Any state in the HTML components must be mirrored 
in the React component’s state
– e.g., every text field’s value must be part of some 

React component’s state
– render produces

<input type=“text” value={…}>

CSE 331 Fall 2022 15



Other React Gotchas

• render should not have side-effects
– only read this.state in render

• Never modify this.state
– use this.setState instead

• Never modify this.props
– read-only information about parent’s state

• Not following these rules may introduce bugs that will 
be hard to catch!

CSE 331 Fall 2022 16



React Performance

• React re-computes the tree of HTML on state change
– can compute a “diff” vs last version to get changes

• Surprisingly, this is not slow!
– slow part is calls into browser methods
– pure-JS parts are very fast in modern browsers
– processing HTML strings is also incredibly fast

CSE 331 Fall 2022 17



React Tools

• Use of compilers etc. means new tool set

• npm does much of the work for us
– installs third-party libraries
– runs the compiler(s)

CSE 331 Fall 2022 18


