
CSE 331
Software Design & Implementation

Autumn 2022
Section 5 – Graphs, Equals and Hashcode

UW CSE 331 Autumn 2022 1

Administrivia

• HW4 due yesterday!

• HW5 out now, due next Wednesday (11/2) at 11 pm!

• Any questions?

2UW CSE 331 Autumn 2022

Agenda

• Graph concepts

• HW5

• Script Testing

• Equals and Hashcode

UW CSE 331 Autumn 2022 3

Graphs

UW CSE 331 Autumn 2022 4

A graph represents relationships

A graph is a set of nodes and a set of edges between them.

Nodes may be labeled.

Edges may be labeled.

Edges may have a direction.

UW CSE 331 Autumn 2022 5

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Example: Road Map

Nodes: intersections (cities) Edges: roads
Label: name/location Label: name/length

UW CSE 331 Autumn 2022 6

Example: Airline Flights

Nodes: airports Edges: flights
Label: airport code Label: cost/time

UW CSE 331 Autumn 2022 7

Example: CSE courses

Nodes: Courses Edges: pointer to next class
Label: Course name Label: none

UW CSE 331 Autumn 2022 8

CSE
142

CSE
143

CSE
311

CSE
312

CSE
331

CSE
332

CSE
421

CSE
447

CSE
446

You’ve used graphs before!

Singly linked Lists:

Nodes: Linked list node Edges: pointer to next node
Label: integer Label: none

UW CSE 331 Autumn 2022 9

3 -25 0

You’ve used graphs before!

Doubly linked Lists:

Nodes: Linked list node Edges: pointers to prev/next nodes
Label: integer Label: none

UW CSE 331 Autumn 2022 10

3 -25 0

You’ve used graphs before!

Binary trees:

Nodes: Tree node Edges: pointers to children
Label: Integer Label: none

UW CSE 331 Autumn 2022 11

8 43

42

-3 40 98

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source
• Incoming to destination

N.B.: We’re only dealing with directed
graphs from here on out.

UW CSE 331 Autumn 2022 12

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source
• Incoming to destination

Edge A is Node 1 à Node 2.
• Outgoing from Node 1
• Incoming to Node 2

UW CSE 331 Autumn 2022 13

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

An edge points from source to dest.

Each edge “points” from a source to a destination.
• Outgoing from source
• Incoming to destination

Edge C is Node 2 à Node 3.
• Outgoing from Node 2
• Incoming to Node 3

UW CSE 331 Autumn 2022 14

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

UW CSE 331 Autumn 2022 15

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

Node 3 has three children:
• Node 1
• Node 4
• Node 5

UW CSE 331 Autumn 2022 16

Node 5

Node 1

Node 3
Node 4

Node 2
Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Edge I

A node has children

A node’s outgoing edges point to its children.
• Potentially empty set

Node 2 has two children:
• Node 2
• Node 3

UW CSE 331 Autumn 2022 17

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

UW CSE 331 Autumn 2022 18

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

Node 4 has two parents:
• Node 3
• Node 5

UW CSE 331 Autumn 2022 19

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has parents

A node’s incoming edges point from its parents.
• Potentially empty set

Node 5 has one parent:
• Node 3

UW CSE 331 Autumn 2022 20

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

UW CSE 331 Autumn 2022 21

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

Node 2 has four neighbors:
• Node 1 (parent)
• Node 2 (self-pointing)
• Node 3 (child)
• Node 4 (parent)

UW CSE 331 Autumn 2022 22

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

A node has neighbors

A node’s neighbors are its children plus its parents.
• Potentially empty set

Node 3 has four neighbors:
• Node 1 (child)
• Node 2 (parent)
• Node 4 (parent and child)
• Node 5 (child)

UW CSE 331 Autumn 2022 23

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence
• Might include a cycle
• Often want shortest

UW CSE 331 Autumn 2022 24

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence
• Might include a cycle
• Often want shortest

Path from Node 1 to Node 5:
1. Edge A : Node 1 à Node 2
2. Edge C : Node 2 à Node 3
3. Edge G : Node 3 à Node 5

UW CSE 331 Autumn 2022 25

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence
• Might include a cycle
• Often want shortest

Path from Node 1 to Node 5:
1. Edge A : Node 1 à Node 2
2. Edge C : Node 2 à Node 3
3. Edge E : Node 3 à Node 4
4. Edge F : Node 4 à Node 3
5. Edge G : Node 3 à Node 5

UW CSE 331 Autumn 2022 26

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence
• Might include a cycle
• Often want shortest

Path from Node 1 to Node 1:
1. Edge A : Node 1 à Node 2
2. Edge C : Node 2 à Node 3
3. Edge B : Node 3 à Node 1

UW CSE 331 Autumn 2022 27

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 1 Node 2

Edge I

Paths between nodes

A path is a “chain” of edges from a source to a destination.
• Potentially empty sequence
• Might include a cycle
• Often want shortest

Path from Node 2 to Node 2:
1. Edge I : Node 2 à Node 2

UW CSE 331 Autumn 2022 28

Node 5

Node 1

Node 3
Node 4

Edge A

Edge H
Edge G

Edge E

Edge D
Edge CEdge B

Edge F

Node 2

Edge I

Node 2

Possible graph operations

Creators
• Construct an empty graph

Observers
• Look up node(s) by label, children of, parents of, neighbors of, …
• Look up edge(s) by label, incoming to, outgoing from, …
• Iterate through all nodes
• Iterate through all edges

Mutators
• Insert/remove a node
• Insert/remove an edge

UW CSE 331 Autumn 2022 29

You might or might not want to
include all of these operations in
your graph ADT design.

More observers
• Find all reachable nodes
• Count indegree, outdegree

HW5: Design before implementation

• HW5: Building an ADT for labeled, directed graphs
– Labeled: Nodes and edges have label values (Strings)
– Directed: Edges have direction
– Edges with same source and destination will have unique labels

• The exact interface of your Graph class is up to you
– So no given JUnit tests bundled with the starter code
– Reminder: Not a generic class.

• HW5 is just designing and specifying the ADT
– HW6 will be implementing it

UW CSE 331 Autumn 2022 30

HW5: What’s Included

• Your submission for HW5 should include:
– Java class(es) that represent your ADT

• Each with method stubs
– Specifications for all classes and methods
– Tests for your ADT

• JUnit and Script tests (coming soon...)

• Your submission for HW5 should not include:
– Any implemented methods
– Anything private (fields, methods, classes, etc.)

• Including RI and AF

UW CSE 331 Autumn 2022 31

HW5: Specifications in JavaDoc

• Write class/method specifications in proper JavaDoc comments
– See “Resources” à “Class and Method Specifications”

• You can generate nice HTML pages cleanly presenting all your
JavaDoc specifications
– Placed in “build/docs/javadoc/”

• This is a great way to verify the JavaDoc is formatted correctly
– And to review/proofread your work…

• Let’s look at the JavaDoc from HW4… (demo)

UW CSE 331 Autumn 2022 32

JavaDoc Demo

• Run the “javadoc” gradle task (in the documentation folder)

• Locate build/docs/javadoc/index.html, right-click,
Open In > a browser of your choice
– Look for formatting errors or missing components!

UW CSE 331 Autumn 2022 33

HW5: Testing

• The design process includes crafting a good test suite
– Script tests and JUnit tests

• Script Tests (src/test/resources/testScripts/)
– Test script files name.test with corresponding name.expected
– Validate behavior intrinsic to high-level concept (abstract meaning)
– Tested properties should be expected of any solution to HW5

• JUnit Tests (src/test/java/graph/junitTests/)
– JUnit test classes
– Validate behavior that can't be tested with script tests.

• If you can validate a behavior using either test type, use a script
test!

UW CSE 331 Autumn 2022 34

HW5: Script Tests

Each script test is expressed as text-based script foo.test
– One command per line, of the form: Command arg1 arg2…
– Script’s output compared against foo.expected
– Precise details specified in the homework
– Match format exactly, including whitespace!

UW CSE 331 Autumn 2022 35

Command (in foo.test) Output (in foo.expected)
CreateGraph name created graph name

AddNode graph label added node label to graph

AddEdge graph parent child label added edge label from parent to child in graph

ListNodes graph graph contains: labelnode …

ListChildren graph parent the children of parent in graph are: child(labeledge) …

This is comment text … # This is comment text …

HW5: example.test

Create a graph
CreateGraph graph1

Add a pair of nodes
AddNode graph1 n1
AddNode graph1 n2

Add an edge
AddEdge graph1 n1 n2 e1

Print all nodes in the graph
ListNodes graph1

Print all child nodes of n1 with outgoing edge
ListChildren graph1 n1

UW CSE 331 Autumn 2022 36

n1 n2
e1

HW5: example.expected

Create a graph
created graph graph1

Add a pair of nodes
added node n1 to graph1
added node n2 to graph1

Add an edge
added edge e1 from n1 to n2 in graph1

Print all nodes in the graph
graph1 contains: n1 n2

Print all child nodes of n1 with outgoing edge
the children of n1 in graph1 are: n2(e1)

UW CSE 331 Autumn 2022 37

n1 n2
e1

HW5: Why Script Tests?

• Everyone’s implementation could (will!) be different, so we
(staff) cannot write JUnit tests for everyone to use or to use for
checking everyone’s code.

• We still need a way to test that you specify and implement the
proper behavior, so we use script tests that work regardless of
the implementation.

• They test what the methods are doing, they don’t care how the
methods are doing it.

UW CSE 331 Autumn 2022 38

HW5: Creating a script test

1. Write test steps as script commands in a file foo.test

2. Write expected (“correct”) output in a file foo.expected
– …taking care to match the output format exactly

3. Place both files under src/test/resources/testScripts/

4. Run all such tests via the Gradle task scriptTests
– After class implemented and GraphTestDriver stubs filled

UW CSE 331 Autumn 2022 39

HW5: Test Commands vs Methods

UW CSE 331 Autumn 2022 40

• Your graph should not have the exact same interface as the
script test commands
– e.g. you should not have a method called AddNode() that

adds a node to the graph and prints out/returns the string
“added node n1 to graph1”

– This wouldn’t make much sense for other graph clients!

• But you will need the ability to add a node!

• Later, we will need some way to map script test commands
(AddNode graph1 n1) to some Java code that uses the
methods of your graph class
– This is part of HW6; do not worry about for now

HW5: ListNodes and ListChildren

UW CSE 331 Autumn 2022 41

• ListNodes and ListChildren are the only commands where
the output depends on the state of your graph
– The rest have output that repeats inputs (e.g. name of graph)

• Thus, every test should have either ListNodes or
ListChildren to validate the graph state.

• These two commands have output in a specific format and in
sorted order
– But your methods should not return things in this format or in

sorted order
– Instead, your methods should return the necessary

information in collections

HW5: Script tests vs. JUnit Tests

UW CSE 331 Autumn 2022 42

• Script tests will not cover every case for your graph:
– What if you have additional methods that can’t be tested by

our script test commands?
– What about “bad” input for your graph?
– What happens when you try to add the same node twice?
– …

• We need some way to test cases that cannot be covered by our
script tests

• For this, we use JUnit tests.

HW5: Creating JUnit tests

1. Create JUnit test class in src/test/java/graph/junitTests/

2. Write a test method for each unit test

3. Run all such tests via the Gradle task junitTests

UW CSE 331 Autumn 2022 43

import org.junit.*;
import static org.junit.Assert.*;

/** Document class... */
public class FooTests {
/** Document method... */
@Test
public void testBar() { ... /* JUnit assertions */ }

}

HW5: Creating JUnit tests

• Note: Your JUnit tests will fail in HW5, because you have not
implemented the actual methods yet
– The same goes for your script tests

• You will get them passing in HW6

UW CSE 331 Autumn 2022 44

Equals and Hashcode

UW CSE 331 Autumn 2022 45

The equals method (review)

• Specification mandates several properties:
– Reflexive: x.equals(x) is true
– Symmetric: x.equals(y)Û y.equals(x)
– Transitive: x.equals(y) Ù y.equals(z)Þ x.equals(z)
– Consistent: x.equals(y) shouldn’t change, unless perhaps x or y

did
– Null uniqueness: x.equals(null) is false

• Several notions of equality:
– Referential: literally the same object in memory
– Behavioral: no sequence of operations could tell apart (excluding ==)
– Observational: no sequence of observer operations could tell apart

(excluding ==)

UW CSE 331 Autumn 2022 46

The hashCode method (review)

• Specification mandates several properties:
– Self-consistent: x.hashCode() shouldn’t change, unless x did
– Equality-consistent: x.equals(y)Þ x.hashCode() ==

y.hashCode()

• Equal objects must have the same hash code.
– Implementations of equals and hashCode work together for this
– If you override equals, you must override hashCode as well

• Ideally a good hashCode method returns different values for unequal
objects, but the contract does not require this.

UW CSE 331 Autumn 2022 47

Overriding equals and hashCode

• A subclass method overrides a superclass method, when…
– They have the exact same name
– They have the exact same argument types

• An overriding method should satisfy the overridden method’s spec.

• Always use @override tag when overriding equals and
hashCode (or any other overridden method)

• Note: Method overloading is not the same as overriding
– Same name but distinguished by different argument types

• Keep these details in mind if you override equals and hashCode.

UW CSE 331 Autumn 2022 48

equals and hashCode worksheet

• Let’s practice…

UW CSE 331 Autumn 2022 49

