CSE 331 22au Section 7 Handout

1. Recall the pseudocode for Dijkstra's algorithm, and consider the following graph below.
```
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active
while active is non-empty:
    minPath = active.removeMin()
    minDest = destination node in minPath
    if minDest is dest:
        return minPath
    if minDest is in finished:
        continue
    for each edge e = \langleminDest, child\rangle:
        if child is not in finished:
        newPath = minPath + e
        add newPath to active
    add minDest to finished
```


Find the shortest path starting from \mathbf{A} going to \mathbf{E}. Record each update (push, pop) to the queue or any returns (true, false) in the table below.

Node	Finished	Cost	Previous
A			
B			
C			
D			
E			
F			
G			
H			

