
CSE 331
Software Design & Implementation

Autumn 2022
Section 7 – Dijkstra's algorithm; Model-View-Controller, 

HW7
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Administrivia

• HW6 due today
– Revise your ADT with any feedback from HW5
– Use a DEBUG flag to dial down an expensive checkRep
– Set it to false when you submit!

• HW7 due one week from today (Thursday)
– Assignment posted on web now, starter code pushed

• IntelliJ: Get the Ultimate Edition if you haven’t already
– We will start moving onto React next week. You will be at a 

big disadvantage if you are still using the Community Edition

• Any questions?
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Agenda

• Overview of HW7

• Dijkstra’s algorithm

• Model-View-Controller (MVC) design

• The campus dataset
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HW7 – Overview

• HW7 includes 2 folders:
– hw-tasks/
– hw-pathfinder/

• When done, attach the tag hw7-final
– Reminder: commit/push everything, and then create/push 

the tag in a separate transaction!
– Remember to check Repository > Graph on GitLab to verify 

that your tag is on the correct commit!
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HW7 – Tasks

• You will first need to make your graph class generic to take 
other types for node and edge labels that are not Strings.
a. Update HW5/6 to use the generic graph ADT
b. Make sure all the HW5/6 tests pass!

• You will need to implement some of TaskSorter
– Tasks can be dependent on other tasks (i.e. one needs to be 

completed before the other)
– What’s a natural way to represent this? A graph!
– Given a set of tasks and dependencies, can we find an 

ordering of tasks that satisfies the dependencies?
• This algorithm is already written for you (we suggest you 

take a look)
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HW7 – Tasks

• Tasks are nodes, dependencies are edges

• Let’s take a look at a visual:
• If X -> Y, task X must be done before task Y.
• What order can we complete these tasks in?
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B -> D -> A -> C
A B

D
C



HW7 – Pathfinder

Next part: a program to find the shortest walking routes through 
campus

– Network of walkways in campus constitutes a graph!

Pathfinder progresses through 3 steps:

1. Implement Dijkstra’s algorithm
– Starter code gives a path ADT to store search result: 

pathfinder.datastructures.Path

2. Run tests for your implementation of Dijkstra’s algorithm

3. Complete starter code for the Pathfinder application
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Dijkstra’s algorithm

• Named for its inventor, Edsger Dijkstra (1930–2002)
– Truly one of the “founders” of computer science
– Just one of his many contributions

• Key idea: find shortest path based on numeric edge weights:
– Track the path to each node with least-yet-seen cost 
– Shrink a set of pending nodes as they are visited

• A priority queue makes handling weights efficient and convenient
– Helps track which node to process next

• Note: Dijkstra’s algorithm requires all edge weights be nonnegative
– (Other graph search algorithms can handle negative weights –

see Bellman-Ford algorithm)
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Priority queue

• A queue-like ADT that reorders elements by associated priority
– Whichever element has the least value dequeues next (not FIFO)
– Priority of an element traditionally given as a separate integer

• Java provides a standard implementation, PriorityQueue<E>
– Implements the Queue<E> interface but has distinct semantics
– Enqueue (add) with the add method
– Dequeue (remove highest priority) with the remove method

• PriorityQueue<E> uses comparison order for priority order
– Default: class E implements Comparable<E>
– May configure otherwise with a Comparator<E>
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Priority queue – example
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q = new PriorityQueue<Double>();

q.add(5.1);

q.add(4.2);

q.add(0.3);

q.remove(); // 0.3

q.add(0.8);

q.remove(); // 0.8

q.add(20.4);

q.remove(); // 4.2

5.1

4.2 5.1

0.3 4.2 5.1

0.8 4.2 5.1

4.2 5.1

4.2 5.1

4.2 5.1 20.4

5.1 20.4



Finding the “shortest” path

• In HW7, edge labels are numbers, called weights
– Labeled graphs like that are called weighted graphs
– An edge’s weight is considered its cost (think time, distance, price, …)

• HW7 measures the “shortest” path by the total weight of its edges
– So really, the path with the least cost
– Find using Dijkstra’s algorithm
– Edge weights crucially relevant

• There are other definitions of “shortest” path that we will not 
consider
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Aside: break vs. continue

• break exits the loop, while continue skips the rest of this 
iteration

for (int i = 0; i < 5; i++) {
if (i == 3) { break; }
System.out.println(i + " ");

}
// out: 0 1 2

for (int i = 0; i < 5; i++) {
if (i == 3) { continue; }
System.out.println(i + " ");

}
// out: 0 1 2 4
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Dijkstra’s algorithm

• Main idea: Start at the source node and find the shortest path to 
all reachable nodes.
– This will include the shortest path to your destination!

• What is the shortest path from A to C for the given graph using 
Dijkstra’s algorithm?
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Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.
add a path from start to itself to active

<inv ???> What would be a good invariant for this loop?
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished
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Dijkstra’s algorithm – paths from A  
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A B

D
C

F H

E

G

0 ? ? ?

?

?

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A 0 -
B
C
D
E
F
G
H

path cost

[A] 0

priority queue



Dijkstra’s algorithm – paths from A 
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1
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9
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Dijkstra’s algorithm – paths from A 
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G
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1
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1
9
2

4
5

node finished cost prev

A Y 0 -
B ≤ 2 A
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G
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[A, C] 1
[A, B] 2
[A, D] 4

priority queue



Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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priority queue



Dijkstra’s algorithm – paths from A  

UW CSE 331 Autumn 2022 20

A B

D
C

F H

E

G

0 2 ? ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F
G
H

path cost

[A, D] 4
[A, C, E] 12

priority queue



Dijkstra’s algorithm – paths from A  

UW CSE 331 Autumn 2022 21

A B

D
C

F H

E

G

0 2 4 ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G
H

path cost

[A, D] 4
[A, B, F] 4
[A, C, E] 12
[A, B, E] 12

priority queue



Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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priority queue



Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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Dijkstra’s algorithm – paths from A  
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Now we know the cost and 
path to every single node by 
looking at the table!



Dijkstra’s algorithm - Worksheet

• Now it’s your turn!
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Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished
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Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished
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What else?



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished
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All nodes not reached yet are 
farther away than those 
reached so far



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished
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All nodes not reached yet are 
farther away than those 
reached so far

The queue contains all paths 
formed by adding 1 more 
edge to a node we already 
reached.



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths & ...>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished
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Let’s take a moment 
to think what else is 
true here?



Dijkstra’s algorithm – pseudocode 
active = priority queue of paths.  
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths & ...>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished
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It follows from our updated 
invariant that this path is 
the shortest path (assuming 
node is not in finished)



Model-View-Controller
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Model-View-Controller

• Model-View-Controller (MVC) is a ubiquitous design pattern:
– The model abstracts + represents the application’s data.
– The view provides a user interface to display the application 

data.
– The controller handles user input to affect the application.
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Model-View-Controller: Example

• Accessing my Google Drive files through my laptop and my phone
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Laptop Phone

View: The screen displays options for me to select files

Control: Get input selection from 
mouse/keyboard

Control: Get input selection from 
touch sensor

Control: Request the selected file from Google Drive

Model: Google Drive sends back the request file to my device

Control: Receive the file and pass it to View

View: The screen displays the file



HW 7 – Model-View-Controller

• HW7 is an MVC application, with much given as starter code.
– View: pathfinder.textInterface.TextInterfaceView
– Controller: pathfinder.textInterface.TextInterfaceController

• You will need to fill out the code in pathfinder.CampusMap.
– Since your code implements the model functionality
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HW7: text-based View-Controller

• TextInterfaceView

– Displays output to users from the result received from 
TextInterfaceController.

– Receives input from users.
• Does not process anything; directly pass the input to the 
TextInterfaceController to process.

• TextInterfaceController
– Process the passed input from the TextInterfaceView

• Include talking to the Model (the graph & supporting code)
– Give the processed result back to the TextInterfaceView to 

display to users.

* HW9 will be using the same Model but different and more sophisticated View and Controller
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Campus dataset

• Two CSV files in src/main/resources/data:
– campus_buildings.csv – building entrances on campus
– campus_paths.csv – straight-line walkways on campus

• Exact points on campus identified with (x, y) coordinates
– Pixels on a map of campus (campus_map.jpg, next to CSV files)
– Position (0, 0), the origin, is the top left corner of the map

• Parser in starter code: pathfinder.parser.CampusPathsParser
– CampusBuilding object for each entry of 

campus_buildings.csv
– CampusPath object for each entry of campus_paths.csv
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Campus dataset – coordinate plane
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x

y

campus_map.jpg



Campus dataset – sample

• campus_buildings.CSV has entries like the following:
shortName longName x y
BGR, By George, 1671.5499, 1258.4333
MOR, Moore Hall, 2317.1749, 1859.502

• campus_paths.CSV has entries like the following:
x1 y1 x2 y2 distance
1810.0, 431.5, 1804.6429, 437.92857, 17.956615…
1810.0, 431.5, 1829.2857, 409.35714, 60.251364…

• See campus_routes.jpg for nice visual rendering of 
campus_paths.csv
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Campus dataset – demo

• Your TA will open the starter files of HW 7.
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Script testing in HW7

• Extends the test-script mechanism from HW5/6
– Using numeric weights instead of string labels on edges
– New command FindPath to find shortest path with Dijkstra’s 

algorithm

• Must write the test driver (PathfinderTestDriver) yourself
– Feel free to copy pieces from GraphTestDriver in HW5/6
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Command (in foo.test) Output (in foo.expected)

FindPath graph node1 noden

path from node1 to noden:
node1 to node2 with weight w1,2
node2 to node3 with weight w2,3
...
noden-1 to noden with weight wn-1,n
total cost: w

... ...


