
CSE 331
Software Design & Implementation

Autumn 2022
Section 7 – Dijkstra's algorithm; Model-View-Controller,

HW7

UW CSE 331 Autumn 2022 1

Administrivia

• HW6 due today
– Revise your ADT with any feedback from HW5
– Use a DEBUG flag to dial down an expensive checkRep
– Set it to false when you submit!

• HW7 due one week from today (Thursday)
– Assignment posted on web now, starter code pushed

• IntelliJ: Get the Ultimate Edition if you haven’t already
– We will start moving onto React next week. You will be at a

big disadvantage if you are still using the Community Edition

• Any questions?
2UW CSE 331 Autumn 2022

Agenda

• Overview of HW7

• Dijkstra’s algorithm

• Model-View-Controller (MVC) design

• The campus dataset

UW CSE 331 Autumn 2022 3

HW7 – Overview

• HW7 includes 2 folders:
– hw-tasks/
– hw-pathfinder/

• When done, attach the tag hw7-final
– Reminder: commit/push everything, and then create/push

the tag in a separate transaction!
– Remember to check Repository > Graph on GitLab to verify

that your tag is on the correct commit!

UW CSE 331 Autumn 2022 4

HW7 – Tasks

• You will first need to make your graph class generic to take
other types for node and edge labels that are not Strings.
a. Update HW5/6 to use the generic graph ADT
b. Make sure all the HW5/6 tests pass!

• You will need to implement some of TaskSorter
– Tasks can be dependent on other tasks (i.e. one needs to be

completed before the other)
– What’s a natural way to represent this? A graph!
– Given a set of tasks and dependencies, can we find an

ordering of tasks that satisfies the dependencies?
• This algorithm is already written for you (we suggest you

take a look)

UW CSE 331 Autumn 2022 5

HW7 – Tasks

• Tasks are nodes, dependencies are edges

• Let’s take a look at a visual:
• If X -> Y, task X must be done before task Y.
• What order can we complete these tasks in?

UW CSE 331 Autumn 2022 6

B -> D -> A -> C
A B

D
C

HW7 – Pathfinder

Next part: a program to find the shortest walking routes through
campus

– Network of walkways in campus constitutes a graph!

Pathfinder progresses through 3 steps:

1. Implement Dijkstra’s algorithm
– Starter code gives a path ADT to store search result:

pathfinder.datastructures.Path

2. Run tests for your implementation of Dijkstra’s algorithm

3. Complete starter code for the Pathfinder application

UW CSE 331 Autumn 2022 7

Dijkstra’s algorithm

• Named for its inventor, Edsger Dijkstra (1930–2002)
– Truly one of the “founders” of computer science
– Just one of his many contributions

• Key idea: find shortest path based on numeric edge weights:
– Track the path to each node with least-yet-seen cost
– Shrink a set of pending nodes as they are visited

• A priority queue makes handling weights efficient and convenient
– Helps track which node to process next

• Note: Dijkstra’s algorithm requires all edge weights be nonnegative
– (Other graph search algorithms can handle negative weights –

see Bellman-Ford algorithm)

UW CSE 331 Autumn 2022 8

Priority queue

• A queue-like ADT that reorders elements by associated priority
– Whichever element has the least value dequeues next (not FIFO)
– Priority of an element traditionally given as a separate integer

• Java provides a standard implementation, PriorityQueue<E>
– Implements the Queue<E> interface but has distinct semantics
– Enqueue (add) with the add method
– Dequeue (remove highest priority) with the remove method

• PriorityQueue<E> uses comparison order for priority order
– Default: class E implements Comparable<E>
– May configure otherwise with a Comparator<E>

UW CSE 331 Autumn 2022 9

Priority queue – example

UW CSE 331 Autumn 2022 10

q = new PriorityQueue<Double>();

q.add(5.1);

q.add(4.2);

q.add(0.3);

q.remove(); // 0.3

q.add(0.8);

q.remove(); // 0.8

q.add(20.4);

q.remove(); // 4.2

5.1

4.2 5.1

0.3 4.2 5.1

0.8 4.2 5.1

4.2 5.1

4.2 5.1

4.2 5.1 20.4

5.1 20.4

Finding the “shortest” path

• In HW7, edge labels are numbers, called weights
– Labeled graphs like that are called weighted graphs
– An edge’s weight is considered its cost (think time, distance, price, …)

• HW7 measures the “shortest” path by the total weight of its edges
– So really, the path with the least cost
– Find using Dijkstra’s algorithm
– Edge weights crucially relevant

• There are other definitions of “shortest” path that we will not
consider

UW CSE 331 Autumn 2022 11

Aside: break vs. continue

• break exits the loop, while continue skips the rest of this
iteration

for (int i = 0; i < 5; i++) {
if (i == 3) { break; }
System.out.println(i + " ");

}
// out: 0 1 2

for (int i = 0; i < 5; i++) {
if (i == 3) { continue; }
System.out.println(i + " ");

}
// out: 0 1 2 4

UW CSE 331 Autumn 2022 12

Dijkstra’s algorithm

• Main idea: Start at the source node and find the shortest path to
all reachable nodes.
– This will include the shortest path to your destination!

• What is the shortest path from A to C for the given graph using
Dijkstra’s algorithm?

UW CSE 331 Autumn 2022 13

A B

C

2

110

Dijkstra’s algorithm – pseudocode
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active

<inv ???> What would be a good invariant for this loop?
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished

UW CSE 331 Autumn 2022 14

A B

C

2

110

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 15

A B

D
C

F H

E

G

0 ? ? ?

?

?

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A 0 -
B
C
D
E
F
G
H

path cost

[A] 0

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 16

A B

D
C

F H

E

G

0 ? ? ?

?

?

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B
C
D
E
F
G
H

path cost

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 17

A B

D
C

F H

E

G

0 2 ? ?

4

1

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B ≤ 2 A
C ≤ 1 A
D ≤ 4 A
E
F
G
H

path cost

[A, C] 1
[A, B] 2
[A, D] 4

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 18

A B

D
C

F H

E

G

0 2 ? ?

4

1

?

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E
F
G
H

path cost

[A, B] 2
[A, D] 4

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 19

A B

D
C

F H

E

G

0 2 ? ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B ≤ 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F
G
H

path cost

[A, B] 2
[A, D] 4

[A, C, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 20

A B

D
C

F H

E

G

0 2 ? ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F
G
H

path cost

[A, D] 4
[A, C, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 21

A B

D
C

F H

E

G

0 2 4 ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D ≤ 4 A
E ≤ 12 C
F ≤ 4 B
G
H

path cost

[A, D] 4
[A, B, F] 4
[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 22

A B

D
C

F H

E

G

0 2 4 ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F ≤ 4 B
G
H

path cost

[A, B, F] 4
[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 23

A B

D
C

F H

E

G

0 2 4 ?

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 24

A B

D
C

F H

E

G

0 2 4 7

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H ≤ 7 F

path cost

[A, B, F, H] 7
[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 25

A B

D
C

F H

E

G

0 2 4 7

4

1

12

?

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G
H Y 7 F

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 26

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G ≤ 8 H
H Y 7 F

path cost

[A, B, F, H, G] 8
[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 27

A B

D
C

F H

E

G

0 2 4 7

4

1

12

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 12 C
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 28

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E ≤ 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, B, F, H, G, E] 11
[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 29

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, C, E] 12
[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 30

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

[A, B, E] 12

priority queue

Dijkstra’s algorithm – paths from A

UW CSE 331 Autumn 2022 31

A B

D
C

F H

E

G

0 2 4 7

4

1

11

8

2 2 3

110 2
3

1
11

7

1
9
2

4
5

node finished cost prev

A Y 0 -
B Y 2 A
C Y 1 A
D Y 4 A
E Y 11 G
F Y 4 B
G Y 8 H
H Y 7 F

path cost

priority queue

Now we know the cost and
path to every single node by
looking at the table!

Dijkstra’s algorithm - Worksheet

• Now it’s your turn!

UW CSE 331 Autumn 2022 32

Dijkstra’s algorithm – pseudocode
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished

UW CSE 331 Autumn 2022 33

Dijkstra’s algorithm – pseudocode
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished

UW CSE 331 Autumn 2022 34

What else?

Dijkstra’s algorithm – pseudocode
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished

UW CSE 331 Autumn 2022 35

All nodes not reached yet are
farther away than those
reached so far

Dijkstra’s algorithm – pseudocode
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished

UW CSE 331 Autumn 2022 36

All nodes not reached yet are
farther away than those
reached so far

The queue contains all paths
formed by adding 1 more
edge to a node we already
reached.

Dijkstra’s algorithm – pseudocode
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths & ...>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished

UW CSE 331 Autumn 2022 37

Let’s take a moment
to think what else is
true here?

Dijkstra’s algorithm – pseudocode
active = priority queue of paths.
finished = empty set of nodes.
add a path from start to itself to active

<inv: All paths found so far are shortest paths & ...>
while active is non-empty:

minPath = active.removeMin()
minDest = destination node in minPath

if minDest is dest:
return minPath

if minDest is in finished:

continue

for each edge e = ⟨minDest, child⟩:
if child is not in finished:

newPath = minPath + e

add newPath to active
add minDest to finished

UW CSE 331 Autumn 2022 38

It follows from our updated
invariant that this path is
the shortest path (assuming
node is not in finished)

Model-View-Controller

UW CSE 331 Autumn 2022 39

Model-View-Controller

• Model-View-Controller (MVC) is a ubiquitous design pattern:
– The model abstracts + represents the application’s data.
– The view provides a user interface to display the application

data.
– The controller handles user input to affect the application.

UW CSE 331 Autumn 2022 40

Model-View-Controller: Example

• Accessing my Google Drive files through my laptop and my phone

UW CSE 331 Autumn 2022 41

Laptop Phone

View: The screen displays options for me to select files

Control: Get input selection from
mouse/keyboard

Control: Get input selection from
touch sensor

Control: Request the selected file from Google Drive

Model: Google Drive sends back the request file to my device

Control: Receive the file and pass it to View

View: The screen displays the file

HW 7 – Model-View-Controller

• HW7 is an MVC application, with much given as starter code.
– View: pathfinder.textInterface.TextInterfaceView
– Controller: pathfinder.textInterface.TextInterfaceController

• You will need to fill out the code in pathfinder.CampusMap.
– Since your code implements the model functionality

UW CSE 331 Autumn 2022 42

HW7: text-based View-Controller

• TextInterfaceView

– Displays output to users from the result received from
TextInterfaceController.

– Receives input from users.
• Does not process anything; directly pass the input to the
TextInterfaceController to process.

• TextInterfaceController
– Process the passed input from the TextInterfaceView

• Include talking to the Model (the graph & supporting code)
– Give the processed result back to the TextInterfaceView to

display to users.

* HW9 will be using the same Model but different and more sophisticated View and Controller

UW CSE 331 Autumn 2022 43

Campus dataset

• Two CSV files in src/main/resources/data:
– campus_buildings.csv – building entrances on campus
– campus_paths.csv – straight-line walkways on campus

• Exact points on campus identified with (x, y) coordinates
– Pixels on a map of campus (campus_map.jpg, next to CSV files)
– Position (0, 0), the origin, is the top left corner of the map

• Parser in starter code: pathfinder.parser.CampusPathsParser
– CampusBuilding object for each entry of

campus_buildings.csv
– CampusPath object for each entry of campus_paths.csv

UW CSE 331 Autumn 2022 44

Campus dataset – coordinate plane

UW CSE 331 Autumn 2022 45

x

y

campus_map.jpg

Campus dataset – sample

• campus_buildings.CSV has entries like the following:
shortName longName x y
BGR, By George, 1671.5499, 1258.4333
MOR, Moore Hall, 2317.1749, 1859.502

• campus_paths.CSV has entries like the following:
x1 y1 x2 y2 distance
1810.0, 431.5, 1804.6429, 437.92857, 17.956615…
1810.0, 431.5, 1829.2857, 409.35714, 60.251364…

• See campus_routes.jpg for nice visual rendering of
campus_paths.csv

UW CSE 331 Autumn 2022 46

Campus dataset – demo

• Your TA will open the starter files of HW 7.

UW CSE 331 Autumn 2022 47

Script testing in HW7

• Extends the test-script mechanism from HW5/6
– Using numeric weights instead of string labels on edges
– New command FindPath to find shortest path with Dijkstra’s

algorithm

• Must write the test driver (PathfinderTestDriver) yourself
– Feel free to copy pieces from GraphTestDriver in HW5/6

UW CSE 331 Autumn 2022 48

Command (in foo.test) Output (in foo.expected)

FindPath graph node1 noden

path from node1 to noden:
node1 to node2 with weight w1,2
node2 to node3 with weight w2,3
...
noden-1 to noden with weight wn-1,n
total cost: w

... ...

