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Software Design & Implementation
Topic: ADTs + Rep. Invariants

CSE 331

💬 Discussion: What did you struggle with on HW2?
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Reminders

• Great work on HW2!

• Prep. Quiz: HW3  due Monday (7/3)
• HW3   due Thursday (7/6)

Upcoming Deadlines



Last Time…
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Today’s Agenda

• Why Specifications?
• JavaDoc
• Comparing Specifications

o weaker benefits implementer
o stronger benefits client

• Reasoning about Functions
• Abstract Data Types
• ADTs in Java
• Representation Invariants
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Function Calls
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Correctness Toolkit

• Learned forward and backward reasoning for
– assignment
– if statement
– while loop

• One missing element: function calls
– we needed specifications for that
– now we have them
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Reasoning about Function Calls
static int f(int a, int b) { … }

    @requires    P(a,b) -- some assertion about a & b
    @returns  R(a,b,c) -- some assertion about a, b, & c (returned)

Forward

{{ A }}

 c = f(a, b);
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Reasoning about Function Calls
static int f(int a, int b) { … }

    @requires    P(a,b) -- some assertion about a & b
    @returns  R(a,b,c) -- some assertion about a, b, & c (returned)

Forward

{{ A }}

 c = f(a, b);

{{ A and R(a,b,c) }}

if A implies P(a,b)
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Reasoning about Function Calls
static int f(int a, int b) { … }

    @requires    P(a,b) -- some assertion about a & b
    @returns  R(a,b,c) -- some assertion about a, b, & c (returned)

Backward

 c = f(a, b);

{{ B and Q(a,b,c) }}
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Reasoning about Function Calls
static int f(int a, int b) { … }

    @requires    P(a,b) -- some assertion about a & b
    @returns  R(a,b,c) -- some assertion about a, b, & c (returned)

Backward

{{ B and P(a,b) }}

 c = f(a, b);

{{ B and Q(a,b,c) }}
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Reasoning about Function Calls
static int f(int a, int b) { … }

    @requires    P(a,b) -- some assertion about a & b
    @returns  R(a,b,c) -- some assertion about a, b, & c (returned)

Backward

{{ B and P(a,b) }}

 c = f(a, b);

{{ B and Q(a,b,c) }}if R(a,b,c) implies Q(a, b, c)
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Reasoning about Function Calls
static int f(int a, int b) { … }

    @requires    P(a,b) -- some assertion about a & b
    @return  R(a,b,c) -- some assertion about a, b, & c (returned)

Similar to assignment statements when the specification has @requires and @return
– Gets a little trickier when we have @modifies or @effects
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Reasoning about Objects
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Outline

Previously looked at writing specifications for methods.
The situation gets more complex with object-oriented code...

This lecture:
1. What is an Abstract Data Type (ADT)?
2. How to write a specification for an ADT
3. Design methodology for ADTs
4. Reasoning about the implementation of an ADT

Next lecture(s):
• Documenting the implementation of an ADT
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Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Often best to start your design by designing data...
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Bad programmers worry about the 
code. Good programmers worry 
about data structures and their 
relationships.

-- Linus Torvalds

Show me your flowcharts and 
conceal your tables, and I shall 
continue to be mystified. Show me 
your tables, and I won’t usually 
need your flowcharts; they’ll be 
obvious.

-- Fred Brooks
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Designing Around Data

Brooks says it is enough to decide what your data looks like
– (don’t even need to say how it is organized)
– can figure out the data structures & code from that

In fact, even that is possibly too detailed...
– leave room to change data structures over time
– all we really need to know is what operations we need to perform 

with the data
– the specs for those operations are the spec for the data
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An abstract data type defines a class of 
abstract objects which is completely 
characterized by the operations available 
on those objects …

When a programmer makes use of an 
abstract data object, he [sic] is concerned 
only with the behavior which that object 
exhibits but not with any details of how 
that behavior is achieved by means of an 
implementation…

Programming with Abstract Data Types
by Barbara Liskov and Stephen Zilles
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Procedural and data abstractions

Procedural abstraction:
– abstract from implementation details of procedures (methods)
– specification is the abstraction
– satisfy the specification with an implementation

Data abstraction:
– abstract from details of data representation 
– way of thinking about programs and design

Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– one of the fundamental ideas of computer science
– reduces data abstraction to procedural abstraction



CSE 331 Summer 2023

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Hard to always choose the right data structures ahead of time:
– hard to know ahead of time what will be too slow
– programmers are “notoriously” bad at this (Liskov)

ADTs give us the freedom to change data structures later
– data structure details are hidden from the clients



CSE 331 Summer 2023

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Often best to start your design by designing data
– first, what operations will be permitted on the data (for clients)
– next, decide how data be organized (data structures)

• see CSE 332 & CSE 344
– lastly, write the code
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Is everything an ADT?

• Purpose of an ADT is to hide the representation details

• Some classes are not trying to hide their representation
– Example: Pair with fields first and second

– representation is very unlikely to change
– reasonable to expose every field via a method

• Some classes do not have a representation
– they are more “processes” than data
– Example: Math with various mathematical methods 
– it may store data, but client does not need to think about it
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ADTs in Java



CSE 331 Summer 2023

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• details of data structures are hidden from the client
• client see only the operations that provided
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An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• hide details of data structures such as

class RightTriangle {

  float base, altitude;

}

class RightTriangle {

  float hypot, angle;

}

Think of each object as a mathematical triangle
Usable via a set of operations 
  create, getBase, getArea, …

Force clients to use operations to access data
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Another Example

class Point {   class Point {

  public float x;     public float r;

  public float y;     public float theta;

}       }

Different representations of the same concept
– both classes implement the concept “2D point”

Goal of Point ADT is to express the sameness:
– clients should think in terms of the concept “2D point”
– work with objects via operations not the representation
– produces clients that can work with either representation
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rest of
program

abstraction
barrier

Abstract data type = objects + operations

We call this an “abstraction barrier”
– a good thing to have and not cross (a.k.a. violate)
– prevents clients from depending on implementation details

clients implementation

Point
create

translate
scale

x,y

r,theta
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Benefits of ADTs

If clients are forced to respect data abstractions, ...

• Can change how data is stored (and data structures)
– fix bugs 
– improve performance

• Can also change algorithms

• Can delay decisions on how ADT is implemented
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Concept of 2D point, as an ADT

class Point {

  // A 2D point exists in the plane, ... 

  public float x();

  public float y();

  public float r();

  public float theta();

  // ... can be created, ...

  public Point(); // new point at (0,0)

  public Point centroid(Set<Point> points);

  // ... can be moved, ...

  public void translate(float delta_x,

                        float delta_y);

  public void scaleAndRotate(float delta_r,

          float delta_theta);

} 

Observers / Getters

Creators /

Producers

Mutators
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Immutable

1. overview

2. abstract state

3. creators

4. observers

5. producers

6. mutators

Specifying an ADT

• Creators: return new ADT values (e.g., Java constructors)
• Observers / Getters: Return information about an ADT
• Producers: ADT operations that return new values
• Mutators: Modify a value of an ADT

Mutable

1. overview

2. abstract state

3. creators

4. observers

5. producers (rare)

6. mutators
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Specifying an ADT

• No information about the implementation details
– latter called the “concrete representation”

• Note that Point has both field x and method x()
– appears since it is part of the “2D point” concept
– we are still able to change representations

Mutable

1. overview

2. abstract state

3. creators

4. observers

5. producers (rare)

6. mutators

Immutable

1. overview

2. abstract state

3. creators

4. observers

5. producers

6. mutators
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Specifying an ADT

• Need a way write specifications for these procedures
– need a vocabulary for talking about what the operations do

(other than referencing the actual implementation)

• Use “math” (when possible) not actual fields to describe the state
– abstract description of a state is called an abstract state
– describes what the state “means” not the implementation

• give clients an abstract way to think about the state
– each operation described in terms of “creating”, “observing”, “producing”, or 

“mutating” the abstract state

• For familiar ideas from math (point, triangle, number, set, etc.),
we can use those concepts as our abstract state
– otherwise, we need to invent a concept for them
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Poly (immutable): overview
/**

 * A Poly is an immutable polynomial with

 * integer coefficients.  A typical Poly is

 *   c0 + c1x + c2x
2 + ...

 */

class Poly {

Overview: provide high level information about the type
– state if immutable (default not)
– define abstract states for use in operation specifications

• easy here, but sometimes difficult — always vital!
– give an example (reuse it in operation definitions)

Abstract state
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Poly:  creators

// effects: makes a new Poly = 0

  public Poly()

  

  // effects: makes a new Poly = cxn

  // throws: NegExponentException if n < 0

  public Poly(int c, int n)

Creators
– creates a new object

Note: Javadoc above omits many details...
– should be /** ... */ not // ...
– should be @spec.effects not effects
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Poly:  observers

// returns: the degree of this polynomial,

  //   i.e., the largest exponent with a

  //   non-zero coefficient.

  //   Returns 0 if this = 0.

  public int degree()

  // returns: the coefficient of the term

  //   of this polynomial whose exponent is d

  // throws: NegExponentException if d < 0

  public int coeff(int d) 

Observers
– obtains information about objects of that type 

“this” means the

abstract state
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Notes on observers

Observers 
– obtains information about objects of that type

• Specification uses the abstract state from the overview

• Never modifies the abstract state.
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Poly:  producers

// returns: this + q

  public Poly add(Poly q)

  // returns: this * q

  public Poly mul(Poly q)

  // returns: -this

  public Poly negate()

Producers
– creates other objects of the same type
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Notes on producers

Producers
– creates other objects of the same type

• Common in immutable types like java.lang.String
–  String substring(int offset, int len) 

• No side effects
– never modify the abstract state of existing objects
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Poly, example

Poly x = new Poly(4, 3);

Poly y = new Poly(5, 3);

Poly z = x.add(y);

System.out.println(z.coeff(3));   // prints 9
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IntSet (mutable): overview and creator

// Overview: An IntSet is a mutable, 

// unbounded set of integers.  A typical 

// IntSet is { x1, ..., xn }.

class IntSet {

  // effects: makes a new IntSet = {}

  public IntSet() 

 

(Note: Javadoc is highly simplified...)
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IntSet:  observers

// returns: true if and only if x in this set

  public boolean contains(int x)

  // returns: the cardinality of this set

  public int size()

    

  // returns: some element of this set

  // throws: EmptyException when size()==0 

  public int choose()
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IntSet:  mutators 

// modifies: this

  // effects:  change this to this + {x}

  public void add(int x)

  // modifies: this

  // effects:  change this to this - {x}

  public void remove(int x)

Mutators
– modify the abstract state of the object
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Notes on mutators

Mutators
– modify the abstract state of the object

• Rarely modify anything (available to clients) other than this
– list this in modifies clause

• Typically have no return value
– “do one thing and do it well”
– (sometimes return “old” value that was replaced)

Mutable ADTs may have producers too, but that is less common
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Specifying an ADT

Different types of methods:

1. creators

2. observers

3. producers

4. mutators (if mutable)

Described in terms of how they change the abstract state
– abstract description of what the object means

– difficult (unless concept is already familiar) but vital
– specs have no information about concrete representation

• leaves us free to change those in the future
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Implementing a Data Abstraction (ADT)

To implement an ADT:
– select the representation of instances
– implement operations in terms of that representation

Choose a representation so that:
– it is possible to implement required operations
– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later
• almost always better to start simple

Then use reasoning to verify the operations are correct
– two intellectual tools are helpful for this...
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Data abstraction outline

Abstract
States

Fields in our
Java class

Abstraction Barrier

Abstraction function (AF):
Relationship between ADT 

specification and 
implementation

Representation invariant (RI):
Relationship among 

implementation fields

ADT specification ADT implementation
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Connecting implementations to specs
For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean
– defines the set of valid concrete values
– must hold before and after any public method is called
– no object should ever violate the rep invariant 

• such an object has no useful meaning

Abstraction Function: maps Object → abstract state
– we’ll discuss this more next time!
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Example: Circle

/** Represents a mutable circle in the plane. For example,

  * it can be a circle with center (0,0) and radius 1. */

public class Circle {

  // Rep invariant: center != null and rad > 0

  private Point center;

  private double rad;

  // Abstraction function:

  // AF(this) = a circle with center at this.center

  //   and radius this.rad

    

  //  ...

}



CSE 331 Summer 2023

Example: Circle 2

/** Represents a mutable circle in the plane. For example,

  * it can be a circle with center (0,0) and radius 1. */

public class Circle {

  // Rep invariant: center != null and edge != null

  //   and !center.equals(edge)

  private Point center, edge;

  // Abstraction function:

  // AF(this) = a circle with center at this.center

  //   and radius this.center.distanceTo(this.edge)

    

  //  ...

}
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Example: Polynomial

/** An immutable polynomial with integer coefficients.

  * Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

  // Rep invariant: coeffs != null

  private final int[] coeffs;

  // Abstraction function:

  // AF(this) = sum of this.coeffs[i] * x^i

  //   for i = 0 .. this.coeffs.length

  // ... coeff, degree, etc.
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Example: Polynomial 2

/** An immutable polynomial with integer coefficients.

  * Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

  // Rep invariant: terms != null and

  //     no two terms have the same degree and

  //     terms is sorted in descending order by degree

  private final LinkedList<IntTerm> terms;

  // Abstraction function:

  // AF(this) = sum of monomials in this.terms

  //  ... coeff, degree, etc.
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Example: Container

/** A container which can reach but not exceed a given capacity */

public class Container {

  // RI: 0 <= curr <= capacity 

  private int curr;

  private int capacity;

  

  // requires: x > 0

  // modifies: this

  // effects: adds x to this if doing so does not exceed the capacity

  public void add(int x) {

      {{ pre and RI }}
      // your code here

      {{ post and RI }}
  }
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Before next class...

1. Start on Prep. Quiz: HW3 as early as possible!
– Reminds you of integer base conversion

• E.g. binary, decimal, hexadecimal
– Reminds you how to submit your homework assignment

2. Enjoy the Tuesday holiday!
– July 4th, U.S. Independence Day
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