
CSE 331 Summer 2023

Software Design & Implementation
Topic: ADTs + Rep. Invariants

CSE 331

💬 Discussion: What did you struggle with on HW2?

CSE 331 Summer 2023

Reminders

• Great work on HW2!

• Prep. Quiz: HW3 due Monday (7/3)
• HW3 due Thursday (7/6)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2023

Today’s Agenda

• Why Specifications?
• JavaDoc
• Comparing Specifications

o weaker benefits implementer
o stronger benefits client

• Reasoning about Functions
• Abstract Data Types
• ADTs in Java
• Representation Invariants

CSE 331 Summer 2023

Function Calls

CSE 331 Summer 2023

Correctness Toolkit

• Learned forward and backward reasoning for
– assignment
– if statement
– while loop

• One missing element: function calls
– we needed specifications for that
– now we have them

CSE 331 Summer 2023

Reasoning about Function Calls
static int f(int a, int b) { … }

 @requires P(a,b) -- some assertion about a & b
 @returns R(a,b,c) -- some assertion about a, b, & c (returned)

Forward

{{ A }}

 c = f(a, b);

CSE 331 Summer 2023

Reasoning about Function Calls
static int f(int a, int b) { … }

 @requires P(a,b) -- some assertion about a & b
 @returns R(a,b,c) -- some assertion about a, b, & c (returned)

Forward

{{ A }}

 c = f(a, b);

{{ A and R(a,b,c) }}

if A implies P(a,b)

CSE 331 Summer 2023

Reasoning about Function Calls
static int f(int a, int b) { … }

 @requires P(a,b) -- some assertion about a & b
 @returns R(a,b,c) -- some assertion about a, b, & c (returned)

Backward

 c = f(a, b);

{{ B and Q(a,b,c) }}

CSE 331 Summer 2023

Reasoning about Function Calls
static int f(int a, int b) { … }

 @requires P(a,b) -- some assertion about a & b
 @returns R(a,b,c) -- some assertion about a, b, & c (returned)

Backward

{{ B and P(a,b) }}

 c = f(a, b);

{{ B and Q(a,b,c) }}

CSE 331 Summer 2023

Reasoning about Function Calls
static int f(int a, int b) { … }

 @requires P(a,b) -- some assertion about a & b
 @returns R(a,b,c) -- some assertion about a, b, & c (returned)

Backward

{{ B and P(a,b) }}

 c = f(a, b);

{{ B and Q(a,b,c) }}if R(a,b,c) implies Q(a, b, c)

CSE 331 Summer 2023

Reasoning about Function Calls
static int f(int a, int b) { … }

 @requires P(a,b) -- some assertion about a & b
 @return R(a,b,c) -- some assertion about a, b, & c (returned)

Similar to assignment statements when the specification has @requires and @return
– Gets a little trickier when we have @modifies or @effects

CSE 331 Summer 2023

Reasoning about Objects

CSE 331 Summer 2023

Outline

Previously looked at writing specifications for methods.
The situation gets more complex with object-oriented code...

This lecture:
1. What is an Abstract Data Type (ADT)?
2. How to write a specification for an ADT
3. Design methodology for ADTs
4. Reasoning about the implementation of an ADT

Next lecture(s):
• Documenting the implementation of an ADT

CSE 331 Summer 2023

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Often best to start your design by designing data...

CSE 331 Summer 2023

Bad programmers worry about the
code. Good programmers worry
about data structures and their
relationships.

-- Linus Torvalds

Show me your flowcharts and
conceal your tables, and I shall
continue to be mystified. Show me
your tables, and I won’t usually
need your flowcharts; they’ll be
obvious.

-- Fred Brooks

CSE 331 Summer 2023

Designing Around Data

Brooks says it is enough to decide what your data looks like
– (don’t even need to say how it is organized)
– can figure out the data structures & code from that

In fact, even that is possibly too detailed...
– leave room to change data structures over time
– all we really need to know is what operations we need to perform

with the data
– the specs for those operations are the spec for the data

CSE 331 Summer 2023

An abstract data type defines a class of
abstract objects which is completely
characterized by the operations available
on those objects …

When a programmer makes use of an
abstract data object, he [sic] is concerned
only with the behavior which that object
exhibits but not with any details of how
that behavior is achieved by means of an
implementation…

Programming with Abstract Data Types
by Barbara Liskov and Stephen Zilles

CSE 331 Summer 2023

Procedural and data abstractions

Procedural abstraction:
– abstract from implementation details of procedures (methods)
– specification is the abstraction
– satisfy the specification with an implementation

Data abstraction:
– abstract from details of data representation
– way of thinking about programs and design

Abstract Data Type (ADT)
– invented by Barbara Liskov in the 1970s
– one of the fundamental ideas of computer science
– reduces data abstraction to procedural abstraction

CSE 331 Summer 2023

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Hard to always choose the right data structures ahead of time:
– hard to know ahead of time what will be too slow
– programmers are “notoriously” bad at this (Liskov)

ADTs give us the freedom to change data structures later
– data structure details are hidden from the clients

CSE 331 Summer 2023

Why we need Data Abstractions (ADTs)

Manipulating and presenting data is pervasive
– choosing how to organize that data is key design problem
– inventing and describing algorithms is less common

Often best to start your design by designing data
– first, what operations will be permitted on the data (for clients)
– next, decide how data be organized (data structures)

• see CSE 332 & CSE 344
– lastly, write the code

CSE 331 Summer 2023

Is everything an ADT?

• Purpose of an ADT is to hide the representation details

• Some classes are not trying to hide their representation
– Example: Pair with fields first and second

– representation is very unlikely to change
– reasonable to expose every field via a method

• Some classes do not have a representation
– they are more “processes” than data
– Example: Math with various mathematical methods
– it may store data, but client does not need to think about it

CSE 331 Summer 2023

ADTs in Java

CSE 331 Summer 2023

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• details of data structures are hidden from the client
• client see only the operations that provided

CSE 331 Summer 2023

An ADT is a set of operations

ADT abstracts from the organization to meaning of data
• hide details of data structures such as

class RightTriangle {

 float base, altitude;

}

class RightTriangle {

 float hypot, angle;

}

Think of each object as a mathematical triangle
Usable via a set of operations
 create, getBase, getArea, …

Force clients to use operations to access data

CSE 331 Summer 2023

Another Example

class Point { class Point {

 public float x; public float r;

 public float y; public float theta;

} }

Different representations of the same concept
– both classes implement the concept “2D point”

Goal of Point ADT is to express the sameness:
– clients should think in terms of the concept “2D point”
– work with objects via operations not the representation
– produces clients that can work with either representation

CSE 331 Summer 2023

rest of
program

abstraction
barrier

Abstract data type = objects + operations

We call this an “abstraction barrier”
– a good thing to have and not cross (a.k.a. violate)
– prevents clients from depending on implementation details

clients implementation

Point
create

translate
scale

x,y

r,theta

CSE 331 Summer 2023

Benefits of ADTs

If clients are forced to respect data abstractions, ...

• Can change how data is stored (and data structures)
– fix bugs
– improve performance

• Can also change algorithms

• Can delay decisions on how ADT is implemented

CSE 331 Summer 2023

Concept of 2D point, as an ADT

class Point {

 // A 2D point exists in the plane, ...

 public float x();

 public float y();

 public float r();

 public float theta();

 // ... can be created, ...

 public Point(); // new point at (0,0)

 public Point centroid(Set<Point> points);

 // ... can be moved, ...

 public void translate(float delta_x,

 float delta_y);

 public void scaleAndRotate(float delta_r,

 float delta_theta);

}

Observers / Getters

Creators /

Producers

Mutators

CSE 331 Summer 2023

Immutable

1. overview

2. abstract state

3. creators

4. observers

5. producers

6. mutators

Specifying an ADT

• Creators: return new ADT values (e.g., Java constructors)
• Observers / Getters: Return information about an ADT
• Producers: ADT operations that return new values
• Mutators: Modify a value of an ADT

Mutable

1. overview

2. abstract state

3. creators

4. observers

5. producers (rare)

6. mutators

CSE 331 Summer 2023

Specifying an ADT

• No information about the implementation details
– latter called the “concrete representation”

• Note that Point has both field x and method x()
– appears since it is part of the “2D point” concept
– we are still able to change representations

Mutable

1. overview

2. abstract state

3. creators

4. observers

5. producers (rare)

6. mutators

Immutable

1. overview

2. abstract state

3. creators

4. observers

5. producers

6. mutators

CSE 331 Summer 2023

Specifying an ADT

• Need a way write specifications for these procedures
– need a vocabulary for talking about what the operations do

(other than referencing the actual implementation)

• Use “math” (when possible) not actual fields to describe the state
– abstract description of a state is called an abstract state
– describes what the state “means” not the implementation

• give clients an abstract way to think about the state
– each operation described in terms of “creating”, “observing”, “producing”, or

“mutating” the abstract state

• For familiar ideas from math (point, triangle, number, set, etc.),
we can use those concepts as our abstract state
– otherwise, we need to invent a concept for them

CSE 331 Summer 2023

Poly (immutable): overview
/**

 * A Poly is an immutable polynomial with

 * integer coefficients. A typical Poly is

 * c0 + c1x + c2x
2 + ...

 */

class Poly {

Overview: provide high level information about the type
– state if immutable (default not)
– define abstract states for use in operation specifications

• easy here, but sometimes difficult — always vital!
– give an example (reuse it in operation definitions)

Abstract state

CSE 331 Summer 2023

Poly: creators

// effects: makes a new Poly = 0

 public Poly()

 // effects: makes a new Poly = cxn

 // throws: NegExponentException if n < 0

 public Poly(int c, int n)

Creators
– creates a new object

Note: Javadoc above omits many details...
– should be /** ... */ not // ...
– should be @spec.effects not effects

CSE 331 Summer 2023

Poly: observers

// returns: the degree of this polynomial,

 // i.e., the largest exponent with a

 // non-zero coefficient.

 // Returns 0 if this = 0.

 public int degree()

 // returns: the coefficient of the term

 // of this polynomial whose exponent is d

 // throws: NegExponentException if d < 0

 public int coeff(int d)

Observers
– obtains information about objects of that type

“this” means the

abstract state

CSE 331 Summer 2023

Notes on observers

Observers
– obtains information about objects of that type

• Specification uses the abstract state from the overview

• Never modifies the abstract state.

CSE 331 Summer 2023

Poly: producers

// returns: this + q

 public Poly add(Poly q)

 // returns: this * q

 public Poly mul(Poly q)

 // returns: -this

 public Poly negate()

Producers
– creates other objects of the same type

CSE 331 Summer 2023

Notes on producers

Producers
– creates other objects of the same type

• Common in immutable types like java.lang.String
– String substring(int offset, int len)

• No side effects
– never modify the abstract state of existing objects

CSE 331 Summer 2023

Poly, example

Poly x = new Poly(4, 3);

Poly y = new Poly(5, 3);

Poly z = x.add(y);

System.out.println(z.coeff(3)); // prints 9

CSE 331 Summer 2023

IntSet (mutable): overview and creator

// Overview: An IntSet is a mutable,

// unbounded set of integers. A typical

// IntSet is { x1, ..., xn }.

class IntSet {

 // effects: makes a new IntSet = {}

 public IntSet()

(Note: Javadoc is highly simplified...)

CSE 331 Summer 2023

IntSet: observers

// returns: true if and only if x in this set

 public boolean contains(int x)

 // returns: the cardinality of this set

 public int size()

 // returns: some element of this set

 // throws: EmptyException when size()==0

 public int choose()

CSE 331 Summer 2023

IntSet: mutators

// modifies: this

 // effects: change this to this + {x}

 public void add(int x)

 // modifies: this

 // effects: change this to this - {x}

 public void remove(int x)

Mutators
– modify the abstract state of the object

CSE 331 Summer 2023

Notes on mutators

Mutators
– modify the abstract state of the object

• Rarely modify anything (available to clients) other than this
– list this in modifies clause

• Typically have no return value
– “do one thing and do it well”
– (sometimes return “old” value that was replaced)

Mutable ADTs may have producers too, but that is less common

CSE 331 Summer 2023

Specifying an ADT

Different types of methods:

1. creators

2. observers

3. producers

4. mutators (if mutable)

Described in terms of how they change the abstract state
– abstract description of what the object means

– difficult (unless concept is already familiar) but vital
– specs have no information about concrete representation

• leaves us free to change those in the future

CSE 331 Summer 2023

Implementing a Data Abstraction (ADT)

To implement an ADT:
– select the representation of instances
– implement operations in terms of that representation

Choose a representation so that:
– it is possible to implement required operations
– the most frequently used operations are efficient / simple / …

• abstraction allows the rep to change later
• almost always better to start simple

Then use reasoning to verify the operations are correct
– two intellectual tools are helpful for this...

CSE 331 Summer 2023

Data abstraction outline

Abstract
States

Fields in our
Java class

Abstraction Barrier

Abstraction function (AF):
Relationship between ADT

specification and
implementation

Representation invariant (RI):
Relationship among

implementation fields

ADT specification ADT implementation

CSE 331 Summer 2023

Connecting implementations to specs
For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean
– defines the set of valid concrete values
– must hold before and after any public method is called
– no object should ever violate the rep invariant

• such an object has no useful meaning

Abstraction Function: maps Object → abstract state
– we’ll discuss this more next time!

CSE 331 Summer 2023

Example: Circle

/** Represents a mutable circle in the plane. For example,

 * it can be a circle with center (0,0) and radius 1. */

public class Circle {

 // Rep invariant: center != null and rad > 0

 private Point center;

 private double rad;

 // Abstraction function:

 // AF(this) = a circle with center at this.center

 // and radius this.rad

 // ...

}

CSE 331 Summer 2023

Example: Circle 2

/** Represents a mutable circle in the plane. For example,

 * it can be a circle with center (0,0) and radius 1. */

public class Circle {

 // Rep invariant: center != null and edge != null

 // and !center.equals(edge)

 private Point center, edge;

 // Abstraction function:

 // AF(this) = a circle with center at this.center

 // and radius this.center.distanceTo(this.edge)

 // ...

}

CSE 331 Summer 2023

Example: Polynomial

/** An immutable polynomial with integer coefficients.

 * Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

 // Rep invariant: coeffs != null

 private final int[] coeffs;

 // Abstraction function:

 // AF(this) = sum of this.coeffs[i] * x^i

 // for i = 0 .. this.coeffs.length

 // ... coeff, degree, etc.

CSE 331 Summer 2023

Example: Polynomial 2

/** An immutable polynomial with integer coefficients.

 * Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

 // Rep invariant: terms != null and

 // no two terms have the same degree and

 // terms is sorted in descending order by degree

 private final LinkedList<IntTerm> terms;

 // Abstraction function:

 // AF(this) = sum of monomials in this.terms

 // ... coeff, degree, etc.

CSE 331 Summer 2023

Example: Container

/** A container which can reach but not exceed a given capacity */

public class Container {

 // RI: 0 <= curr <= capacity

 private int curr;

 private int capacity;

 // requires: x > 0

 // modifies: this

 // effects: adds x to this if doing so does not exceed the capacity

 public void add(int x) {

 {{ pre and RI }}
 // your code here

 {{ post and RI }}
 }

CSE 331 Summer 2023

Before next class...

1. Start on Prep. Quiz: HW3 as early as possible!
– Reminds you of integer base conversion

• E.g. binary, decimal, hexadecimal
– Reminds you how to submit your homework assignment

2. Enjoy the Tuesday holiday!
– July 4th, U.S. Independence Day

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	Function Calls
	Slide 4: Function Calls
	Slide 5: Correctness Toolkit
	Slide 6: Reasoning about Function Calls
	Slide 7: Reasoning about Function Calls
	Slide 8: Reasoning about Function Calls
	Slide 9: Reasoning about Function Calls
	Slide 10: Reasoning about Function Calls
	Slide 11: Reasoning about Function Calls

	ADTs
	Slide 12: Reasoning about Objects
	Slide 13: Outline
	Slide 14: Why we need Data Abstractions (ADTs)
	Slide 15
	Slide 16: Designing Around Data
	Slide 17
	Slide 18: Procedural and data abstractions
	Slide 19: Why we need Data Abstractions (ADTs)
	Slide 20: Why we need Data Abstractions (ADTs)
	Slide 21: Is everything an ADT?

	ADTs in Java
	Slide 22
	Slide 23: An ADT is a set of operations
	Slide 24: An ADT is a set of operations
	Slide 25: Another Example
	Slide 26: Abstract data type = objects + operations
	Slide 27: Benefits of ADTs
	Slide 28: Concept of 2D point, as an ADT
	Slide 29: Specifying an ADT
	Slide 30: Specifying an ADT
	Slide 31: Specifying an ADT
	Slide 32: Poly (immutable): overview
	Slide 33: Poly: creators
	Slide 34: Poly: observers
	Slide 35: Notes on observers
	Slide 36: Poly: producers
	Slide 37: Notes on producers
	Slide 38: Poly, example
	Slide 39: IntSet (mutable): overview and creator
	Slide 40: IntSet: observers
	Slide 41: IntSet: mutators
	Slide 42: Notes on mutators

	Rep Invariants
	Slide 43: Specifying an ADT
	Slide 44: Implementing a Data Abstraction (ADT)
	Slide 45: Data abstraction outline
	Slide 46: Connecting implementations to specs
	Slide 47: Example: Circle
	Slide 48: Example: Circle 2
	Slide 49: Example: Polynomial
	Slide 50: Example: Polynomial 2
	Slide 51: Example: Container

	Conclusion
	Slide 52: Before next class...

