
CSE 331 Summer 2023

Software Design & Implementation
Topic: Software Testing

CSE 331

💬 Discussion: What software most impresses you?

CSE 331 Summer 2023

Reminders

• Be sure to check Gitlab when submitting
• must commit, tag, push, and manually check the pipeline ran

• HW3 due Thursday (7/06)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2023

Today’s Agenda

• Abstract Data Types
• Representation Exposure

• copy in/out
• immutable
• unmodifiable

• Abstraction Functions
• IntDeque

• Abstraction Functions
• Testing
• Testing Heuristics

CSE 331 Summer 2023

Abstraction Functions

CSE 331 Summer 2023

Specifying an ADT

Different types of operations:

1. creators

2. observers

3. producers

4. mutators (if mutable)

Described in terms of how they change the abstract state
– abstract description of what the object means

– difficult (unless concept is already familiar) but vital
– specs have no information about concrete representation

• leaves us free to change those in the future

CSE 331 Summer 2023

Connecting implementations to specs
For implementers / debuggers / maintainers of the implementation:

Representation Invariant: maps Object → boolean
– describes any constraints on the fields of an object
– must be true before and after each public method call

Abstraction Function: maps Object → abstract state
– says what the data structure means in vocabulary of the ADT
– maps the fields to the abstract state they represent

• can check that the abstract value after each method meets the
postcondition described in the specification

CSE 331 Summer 2023

Example: Polynomial

/** An immutable polynomial with integer coefficients.

 * Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

 // Rep invariant: coeffs != null

 private final int[] coeffs;

 // some code...

}

CSE 331 Summer 2023

Example: Polynomial

/** An immutable polynomial with integer coefficients.

 * Examples include 0, 2x, and x + 3x^2 + 5x. */

public class IntPoly {

 // Rep invariant: coeffs != null

 private final int[] coeffs;

 // Abstraction function:

 // AF(this) = sum of this.coeffs[i] * x^i

 // for i = 0 .. this.coeffs.length

 // some code...

}

CSE 331 Summer 2023

Ariane 5

Ariane 5 was a European rocket
– first launch in June 1996

CSE 331 Summer 2023

Ariane 5

Ariane 5 was a European rocket
– first launch in June 1996

Event: Rocket self-destructed after 37s
Problem: A control software bug that went undetected

– Converted from 64-bit float to 16-bit signed integer
– Code was reused from Ariadne 4
– Threw an exception!

Cost: $370 million

CSE 331 Summer 2023

Therac-25 radiation therapy machine

Designed to be a computer-controlled health tool for
radiation therapy.

Event: Excessive radiation killed patients (1985-87)
Problem: Laser would fire in high-energy mode

– Previous versions had hardware interlocks
– When an operator clicked the wrong button and

exited the menu quickly, it might still fire the beam

Cost: at least 3 human lives

CSE 331 Summer 2023

How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– type checkers, test runners, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Together can catch >97% of bugs.

we’ve just discussed inspection,
i.e. “reasoning”

CSE 331 Summer 2023

What can you learn from testing?

“Program testing can be used to
show the presence of bugs, but
never to show their absence!”

Edsgar Dijkstra
Notes on Structured Programming,

1970

Only reasoning can prove there are no bugs.

So why do anything else?

CSE 331 Summer 2023

How do we ensure correctness?

 “Beware of bugs in the above code;
 I have only proved it correct, not tried it.”
 -Donald Knuth, 1977

Trying it is a surprisingly useful way to find mistakes!

No single activity or approach can guarantee correctness

We need tools and inspection and testing to ensure correctness

CSE 331 Summer 2023

Why you will care about testing

In all likelihood, you will be expected to test your own code

• Industry-wide trend toward developers doing more testing
– 20 years ago, we had large test teams
– now, test teams are small to nonexistent

• Reasons for this change:
1. easy to update products after shipping (users are testers)
2. often lowered quality expectations (startups, games)

• some larger companies want to be more like startups

This has positive and negative effects…

CSE 331 Summer 2023

It’s hard to test your own code

Your psychology is fighting against you:
• confirmation bias

– tendency to avoid evidence that you’re wrong
• operant conditioning

– programmers get cookies when the code works
– testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning

CSE 331 Summer 2023

What is testing?

• Testing is when you run the program and observes its operation
– Profiling a program to measure its speed or memory usage
– Debugging code

• You’ve already seen testing in HW2 and HW3!
• For HW4, you will need to write some tests
• For HW5, you will need to write all the tests

CSE 331 Summer 2023

What is testing?

A test case for the function f(...) consists of two parts:
– test inputs
– test oracle

a = 42;

b = g(...);

c = h(a, ...);

assert f(a, b) == c;

CSE 331 Summer 2023

Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 12 varieties total]:

– unit testing versus integration versus system / end-to-end testing
• one module’s functionality versus pieces fitting together

– clear-box testing versus opaque-box / black-box testing
• did you look at the code before writing the test?

– specification testing versus implementation testing
• test only behavior guaranteed by specification or other behavior expected

for the implementation

CSE 331 Summer 2023

Phases of Testing

• A unit test focuses on one class / module (or even less)
– could write a unit test for a single method
– tests a single unit in isolation from all others

• An integration test verifies that some modules fit together properly
– usually don’t want these until the units are well tested

• i.e., unit tests come first

• A system test runs the entire system (i.e. all modules) to check whether the system
works in realistic scenarios
– usually hard to come up with
– may take a long time to run

CSE 331 Summer 2023

How is testing done?

Write the test
1) Choose input / configuration
2) Define the expected outcome

Run the test
3) Run with input and record the actual outcome
4) Compare actual outcome to expected outcome

CSE 331 Summer 2023

What’s So Hard About Testing?

“Just try it and see if it works...”

 // requires: 1 ≤ x,y,z ≤ 100,000

 // returns: computes some f(x,y,z)

 int func1(int x, int y, int z){…}

Exhaustive testing would require 1 quadrillion cases!
– impractical even for this trivially small problem

Key problem: choosing test suite
– Large/diverse enough to provide a useful amount of validation
– (Small enough to write in reasonable amount of time.)

• need to think through the expected outcome
• very few software projects have too many tests

CSE 331 Summer 2023

Approach: Partition the Input Space

Ideal test suite:
Identify sets with “same behavior”
 (actual and expected)
Test at least one input from each set
 (we call this set a subdomain)

Two problems:

1. Notion of same behavior is subtle
• Naive approach: execution equivalence
• Better approach: revealing subdomains

2. Discovering the sets requires perfect knowledge
• If we had it, we wouldn’t need to test
• Use heuristics to approximate cheaply

CSE 331 Summer 2023

Naive Approach: Execution Equivalence

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < 0) return -x;

 else return x;

}

All x < 0 are execution equivalent:
– Program takes same sequence of steps for any x < 0

All x ≥ 0 are execution equivalent

Suggests that {-3, 3}, for example, is a good test suite

CSE 331 Summer 2023

Execution Equivalence Can Be Wrong

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < -2) return -x;

 else return x;

}

{-3, 3} does not reveal the error!

Two possible executions: x < -2 and x >= -2

Three possible behaviors:
– x < -2 OK, x = -2 or x= -1 (BAD)
– x >= 0 OK

CSE 331 Summer 2023

Revealing Subdomains

• A subdomain is a subset of possible inputs

• A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

• Need test at least one input from a revealing subdomain to find bug
– if you test one input from every revealing subdomain for E,

you are guaranteed to find the bug

• The trick is to guess revealing subdomains for the errors present
– even though your reasoning says your code is correct,

make educated guesses where the bugs might be

CSE 331 Summer 2023

Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– can then take just one example from each subdomain

• Some heuristics are useful for choosing subdomains...

CSE 331 Summer 2023

Heuristics for Designing Test Suites

A good heuristic gives:
– for all errors in some class of errors E:

high probability that some subdomain is revealing for E
– not an absurdly large number of subdomains

Different heuristics target different classes of errors
– in practice, combine multiple heuristics

• (we will see several)
– a way to think about and communicate your test choices

CSE 331 Summer 2023

Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is opaque-box: specification visible, internals hidden

Example
 // returns: a > b => returns a

 // a < b => returns b

 // a = b => returns a

 int max(int a, int b) {…}

3 cases lead to 3 tests
 (4, 3) => 4 (i.e. any input in the subdomain a > b)
 (3, 4) => 4 (i.e. any input in the subdomain a < b)
 (3, 3) => 3 (i.e. any input in the subdomain a = b)

CSE 331 Summer 2023

Specification Testing: Advantages

Process is not influenced by component being tested
– avoids psychological biases we discussed earlier
– can only do this for your own code if you write tests first

Robust with respect to changes in implementation
– test data need not be changed when code is changed

Allows others to test the code (rare nowadays)

CSE 331 Summer 2023

Heuristic: Clear-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– performance optimizations
– alternate algorithms for different cases

Example: abs from before (different behavior < 0 and >= 0)

// @return |x|

int abs(int x) {

 if (x < 0) return -x;

 else return x;

}

CSE 331 Summer 2023

Clear-box Example

There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

// initialize the cache ...

boolean isPrime(int x) {

if (x >= CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {

if (x % i == 0)

return false;

}

return true;

} else {

return primeTable[x];

}

}

CSE 331 Summer 2023

Clear Box Testing: [Dis]Advantages

• Finds an important class of boundaries
– yields useful test cases
– wouldn’t know about primeTable otherwise

Disadvantage:
– buggy code tricks you into thinking it’s right once you look at it

• (confirmation bias)
– can end up with tests having same bugs as implementation
– so also write tests before looking at the code

CSE 331 Summer 2023

Clear-box Example

There are some subdomains that opaque-box testing won't catch:

boolean[] primeTable = new boolean[CACHE_SIZE];

// initialize the cache ...

boolean isPrime(int x) {

if (x >= CACHE_SIZE) {

for (int i=2; i*i <= x; i++) {

if (x % i == 0)

return false;

}

return true;

} else {

return primeTable[x];

}

}

Where is the bug?

CSE 331 Summer 2023

Heuristic: Boundary Cases

Create tests at the boundaries between subdomains

Edges of the “main” subdomains have a
high probability of revealing errors

– e.g., off-by-one bugs

Include one example on each side of the boundary

Also want to test the side edges of the subdomains…

CSE 331 Summer 2023

Summary of Heuristics

Before you write the code (part of ”test-driven development”):
• split subdomains on boundaries appearing in the specification
• choose a test along both sides of each boundary

After you write the code:
• split further on boundaries appearing in the implementation

More next time…

On the other hand, don't confuse volume with quality of tests
• look for revealing subdomains
• want tests in every revealing subdomain not just lots of tests

CSE 331 Summer 2023

Before next class...

1. Start on Prep. Quiz: HW4 as early as possible!
– Reminds you about common set operations

• E.g. union, intersection, complement
– Think about some non-trivial cases needed for the homework

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	Abstraction Functions
	Slide 4
	Slide 5: Specifying an ADT
	Slide 6: Connecting implementations to specs
	Slide 7: Example: Polynomial
	Slide 8: Example: Polynomial

	Motivation
	Slide 9: Ariane 5
	Slide 10: Ariane 5
	Slide 11: Therac-25 radiation therapy machine
	Slide 12: How do we ensure correctness?
	Slide 13: What can you learn from testing?
	Slide 14: How do we ensure correctness?
	Slide 15: Why you will care about testing
	Slide 16: It’s hard to test your own code

	Definitions
	Slide 17: What is testing?
	Slide 18: What is testing?
	Slide 19: Kinds of testing
	Slide 20: Phases of Testing
	Slide 21: How is testing done?
	Slide 22: What’s So Hard About Testing?
	Slide 23: Approach: Partition the Input Space
	Slide 24: Naive Approach: Execution Equivalence
	Slide 25: Execution Equivalence Can Be Wrong
	Slide 26: Revealing Subdomains
	Slide 27: Testing Heuristics
	Slide 28: Heuristics for Designing Test Suites
	Slide 29: Specification Testing
	Slide 30: Specification Testing: Advantages
	Slide 31: Heuristic: Clear-box testing
	Slide 32: Clear-box Example
	Slide 33: Clear Box Testing: [Dis]Advantages
	Slide 34: Clear-box Example
	Slide 35: Heuristic: Boundary Cases
	Slide 36: Summary of Heuristics

	Conclusion
	Slide 37: Before next class...

