
CSE 331 Summer 2023

Software Design & Implementation
Topic: More Testing

CSE 331

💬 Discussion: How would you test a randomized algorithm?

CSE 331 Summer 2023

Reminders

• After HW4, things are going to slow down a bit

• Prep. Quiz: HW4 due Monday (7/10)
• HW4 due Thursday (7/13)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2023

Today’s Agenda

• Testing
– unit vs. integration vs. system
– clear-box vs. opaque-box
– specification vs. implementation

• Testing Heuristics
– specification
– clear-box
– boundary case

• Recap: Testing
• More Testing Heuristics
• Code Coverage
• Discussion: HW4

CSE 331 Summer 2023

Extra OH?

• Thinking about hosting Soham OH immediately before lecture
– Monday/Wednesday/Friday?
– Start off with 30m on all of the days + Ed Discussion board

• Benefits:
– Students can work on homework immediately before the lecture
– Ask questions about course material
– Students can leave if they have no questions

• Drawbacks:
– Many people lose focus when they are in the same room for 1.5 hours
– Technically, I have another commitment at that time…

CSE 331 Summer 2023

Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 12 varieties total]:

– unit testing versus integration versus system / end-to-end testing
• ???

– clear-box testing versus opaque-box / black-box testing
• ???

– specification testing versus implementation testing
• ???

CSE 331 Summer 2023

Kinds of testing

• Testing field has terminology for different kinds of tests
– we won’t discuss all the kinds and terms

• Here are three orthogonal dimensions [so 12 varieties total]:

– unit testing versus integration versus system / end-to-end testing
• one module’s functionality versus pieces fitting together

– clear-box testing versus opaque-box / black-box testing
• did you look at the code before writing the test?

– specification testing versus implementation testing
• test only behavior guaranteed by specification or other behavior expected

for the implementation

CSE 331 Summer 2023

It’s hard to test your own code

Your psychology is fighting against you:
• confirmation bias

– tendency to avoid evidence that you’re wrong
• operant conditioning

– programmers get cookies when the code works
– testers get cookies when the code breaks

You can avoid some effects of confirmation bias by

writing most of your tests before the code

Not much you can do about operant conditioning

CSE 331 Summer 2023

Approach: Partition the Input Space

Ideal test suite:
Identify sets with “same behavior”
 (actual and expected)
Test at least one input from each set
 (we call this set a subdomain)

Two problems:

1. Notion of same behavior is subtle
• We want to find revealing subdomains

2. Discovering the sets requires perfect knowledge
• If we had it, we wouldn’t need to test
• Use heuristics to approximate cheaply

CSE 331 Summer 2023

Heuristics for Designing Test Suites

A good heuristic gives:
– for all errors in some class of errors E:

high probability that some subdomain is revealing for E
– not an absurdly large number of subdomains

Different heuristics target different classes of errors
– in practice, combine multiple heuristics

• (we will see several)
– a way to think about and communicate your test choices

CSE 331 Summer 2023

Testing Heuristics

• Testing is essential but difficult
– want set of tests likely to reveal the bugs present
– but we don’t know where the bugs are

• Our approach:
– split the input space into enough subsets (subdomains)

such that inputs in each one are likely all correct or incorrect
– think carefully through the subdomains you are using
– can then take just one example from each subdomain

• Some heuristics are useful for choosing subdomains...

CSE 331 Summer 2023

Specification Testing

Heuristic: Explore alternate cases in the specification
Procedure is a black box: specification visible, internals hidden

Example
 // returns: a > b => returns a

 // a < b => returns b

 // a = b => returns a

 int max(int a, int b) {…}

3 cases lead to 3 tests
 (4, 3) => 4 (i.e. any input in the subdomain a > b)
 (3, 4) => 4 (i.e. any input in the subdomain a < b)
 (3, 3) => 3 (i.e. any input in the subdomain a = b)

CSE 331 Summer 2023

Practice: Specification Testing

// returns: the smallest i such

// that a[i] == value

// throws: MissingException if value is not in a

int find(int[] a, int value) throws MissingException

What tests might we want to consider for our test suite?

 find([4, 5, 6], 5) => 1
 find([4, 5, 6], 7) => throws MissingException
 find([4, 5, 5], 5) => 1

In general, we should hunt for multiple cases (look at effects and modifies)

CSE 331 Summer 2023

Heuristic: Clear-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– alternate algorithms for different cases
– behavior of the implementation not promised in the spec

• e.g., spec doesn’t promise smallest index,
but implementation does produce that

CSE 331 Summer 2023

Heuristic: Clear-box testing

Focus on features not described by specification
– control-flow details (e.g., conditions of “if” statements in code)
– alternate algorithms for different cases
– behavior of the implementation not promised in the spec

• e.g., spec doesn’t promise smallest index,
but implementation does produce that

// returns: an index i such that a[i] == value

// throws: MissingException if value is not in a

int find(int[] a, int value) throws MissingException

CSE 331 Summer 2023

Practice: Clear- and Black-Box

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < -2) return -x;

 else return x;

}

What subdomains might we want to consider for our test suite?

 {…, -4, -3, -2, -1, 0, 1, 2, 3, …}

is our entire input space.

CSE 331 Summer 2023

Practice: Clear- and Black-Box

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < -2) return -x;

 else return x;

}

What subdomains might we want to consider for our test suite?

 {…, -4, -3, -2, -1} {0, 1, 2, 3, …}

after applying the specification heuristic.

CSE 331 Summer 2023

Practice: Clear- and Black-Box

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < -2) return -x;

 else return x;

}

What subdomains might we want to consider for our test suite?

 {…, -4, -3} {-2, -1} {0, 1, 2, 3, …}

after applying the clear-box heuristic.

CSE 331 Summer 2023

Practice: Clear- and Black-Box

Given the following partition

 {…, -4, -3} {-2, -1} {0, 1, 2, 3, …}

what test cases should we consider for abs?

 abs(-4) => 4
 abs(-2) => 2
 abs(1) => 1

CSE 331 Summer 2023

Heuristic: Boundary Cases

Create tests at the edges of subdomains

Why?
– off-by-one bugs
– smallest & largest numbers
– empty collection

Small subdomains at the edges of the “main” subdomains have a high probability
of revealing many common errors

– also, you might have misdrawn the boundaries

CSE 331 Summer 2023

Boundary Testing

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– there is no point to one side

Example: function has different behavior on 1, …, n versus n+1…

Example: f(x) which requires x >= 0
– x = 0 is a boundary because x < 0 is not allowed

CSE 331 Summer 2023

Practice: Clear- and Black-Box

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < -2) return -x;

 else return x;

}

What subdomains might we want to consider for our test suite?

 {…, -4, -3} {-2, -1} {0, 1, 2, 3, …}

after applying the clear-box heuristic.

CSE 331 Summer 2023

Practice: Clear- and Black-Box

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < -2) return -x;

 else return x;

}

What subdomains might we want to consider for our test suite?

 {…, -4} {-3} {-2} {-1} {0} {1, 2, 3, …}

after applying the boundary case heuristic.

CSE 331 Summer 2023

Practice: Clear- and Black-Box

Given the following partition

 {…, -4} {-3} {-2} {-1} {0} {1, 2, 3, …}

what test cases should we consider for abs?

 abs(-4) => 4
 abs(-3) => 3 (boundary, clear-box)
 abs(-2) => 2 (boundary, clear-box)
 abs(-1) => 1 (boundary, specification)
 abs(0) => 0 (boundary, specification)
 abs(1) => 1

CSE 331 Summer 2023

Boundary Testing

To define the boundary, need a notion of adjacent inputs

Example approach:
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– no adjacent point in some direction

Example: f(x) which requires x >= 0
– x = 0 is a boundary because x < 0 is not allowed

CSE 331 Summer 2023

Boundary Testing

To define the boundary, need a notion of adjacent inputs

Example approach:
– identify basic operations on input points
– two points are adjacent if one basic operation apart

Point is on a boundary if either:
– there exists an adjacent point in a different subdomain
– no adjacent point in some direction

Example: list of integers
– basic operations: add, remove, set
– adjacent points: <[2,3],[2,3,3]>, <[2,3],[2]>, <[2,3],[4,3]>
– boundary point: [] (can’t apply remove)

CSE 331 Summer 2023

Heuristic: Special Cases

Arithmetic
– zero
– overflow errors in arithmetic

Objects
– null
– same object passed as multiple arguments (aliasing)

All of these are common cases where bugs lurk
• you’ll find more as you encounter more bugs

CSE 331 Summer 2023

Special Cases: Arithmetic Overflow

// returns: |x|

public int abs(int x) {…}

How about…
int x = Integer.MIN_VALUE; // x = -2147483648

System.out.println(x <0); // true

System.out.println(Math.abs(x) < 0); // also true!

From Javadoc for Math.abs:
Note that if the argument is equal to the value of Integer.MIN_VALUE, the most
negative representable int value, the result is that same value, which is negative

CSE 331 Summer 2023

Special Cases: Duplicates & Aliases

// modifies: src, dest

// effects: removes all elements of src and

// appends them in reverse order to

// the end of dest

<E> void appendList(List<E> src, List<E> dest) {

while (src.size() > 0) {

E elt = src.remove(src.size() - 1);

dest.add(elt);

}

}

What happens if src and dest refer to the same object?
– this is aliasing
– it’s easy to forget!
– watch out for shared references in inputs

CSE 331 Summer 2023

sqrt example

// throws: IllegalArgumentException if x<0

// returns: approximation to square root of x

public double sqrt(double x){…}

What are some values or ranges of x that might be worth probing?
x < 0 (exception thrown)
x ≥ 0 (returns normally)
around x = 0 (boundary condition)
perfect squares (sqrt(x) an integer), non-perfect squares
x < sqrt(x) and x > sqrt(x) – that’s x < 1 and x > 1 (and x=1)
Specific tests: say x = -1, 0, 0.5, 1, 4 (probably want more)

CSE 331 Summer 2023

Pragmatics: Regression Testing

• Whenever you find a bug
– store the input that elicited that bug, plus the correct output
– add these to the test suite
– verify that the test suite fails
– fix the bug
– verify the fix

• Ensures that your fix solves the problem
– don’t add a test that succeeded to begin with!

• another reason to try to write tests before coding
• Protects against reversions that reintroduce bug

– it happened at least once, and it might happen again
(especially when trying to change the code in the future)

CSE 331 Summer 2023

How many tests is enough?

Correct goal should use revealing subdomains:
– one from each subdomain
– along the boundaries of each subdomain

CSE 331 Summer 2023

How many tests is enough?

Common goal is to achieve high code coverage:
– ensure test suite covers (executes) all the program
– assess quality of test suite with % coverage

• tools to measure this for you

Assumption implicit in goal:
– if high coverage, then most mistakes discovered
– very far from perfect but widely used
– low code coverage is certainly bad

CSE 331 Summer 2023

Code coverage: statement coverage

int min(int a, int b) {

int r = a;

if (a <= b) {

r = a;

}

return r;

}

• Consider any test with a ≤ b (e.g., min(1,2))
– executes every instruction
– misses the bug

• Statement coverage is not enough

CSE 331 Summer 2023

Code coverage: branch coverage

int quadrant(int x, int y) {

int ans;

if (x >= 0)

ans=1;

else

ans=2;

if (y < 0)

ans=4;

return ans;

}

• Consider two-test suite: (2,-2) and (-2,2). Misses the bug.
• Branch coverage (all tests “go both ways”) is not enough

– here, path coverage is enough (there are 4 paths)

2 1

3 4

CSE 331 Summer 2023

Code coverage: path coverage

int countPositive(int[] a) {

int ans = 0;

for (int x : a) {

if (x > 0)

ans = 1; // should be ans += 1;

}

return ans;

}

• Consider two-test suite: [0,0] and [1]. Misses the bug.
• Or consider one-test suite: [0,1,0]. Misses the bug.

• Path coverage is enough, but no bound on path-count!

CSE 331 Summer 2023

Code coverage: what is enough?

int sumOfThree(int a, int b, int c) {

return a+b;

}

• Path coverage is not enough
– consider test suites where c is always 0

• Typically a “moot point” since path coverage is unattainable for realistic
programs
– but do not assume a tested path is correct
– even though it is more likely correct than an untested path

• Another example: buggy abs method from earlier in lecture

CSE 331 Summer 2023

Varieties of coverage
Various coverage metrics (there are more):

Statement coverage
Branch coverage
Loop coverage
Condition/Decision coverage
Path coverage

Limitations of coverage:
1. 100% coverage is not always a reasonable target

– may be high cost to approach 100%
2. Coverage is just a heuristic

– we really want the revealing subdomains for the errors present

Increasing number of
test cases required
(generally)

CSE 331 Summer 2023

Summary of Heuristics

• Split subdomains on boundaries appearing in the specification
• Split subdomains on boundaries appearing in the implementation
• Test examples on the boundaries
• Test special cases like nulls, 0, etc.
• Test any cases that caused bugs before (to avoid regression)
• Make sure tests exercise at least every branch & statement

On the other hand, don't confuse volume with quality of tests
– look for revealing subdomains
– want tests in every revealing subdomain not just lots of tests

CSE 331 Summer 2023

More Testing Tips

• Write tests both before and after you write the code
– (only clear-box tests need to come afterward)

• Be systematic: think through revealing subdomains & test each one

• Test your tests
– try putting a bug in to make sure the test catches it

• Test code is different from regular code
– changeability is less important; correctness is more important
– do not write any test code that is not obviously correct

• otherwise, you need to test that code too!
• unlike in regular code, it’s okay to repeat yourself in tests

CSE 331 Summer 2023

HW4 – Background

• FiniteSet represents {0, 2, 3, 5}
– has some operations like union, intersection, difference, complement

• SimpleSet represents either {0, 2, 3, 5} or R - {0, 2, 3, 5}
– has the same operations!

CSE 331 Summer 2023

HW4 – Part 1

• Reasoning worksheet
• Focuses on the union method in FiniteSet (not SimpleSet)

CSE 331 Summer 2023

HW4 – Part 2

• Writing unit tests for FiniteSet
• Testing Heuristics

– Specification
– Clear-box
– Boundary

CSE 331 Summer 2023

HW4 – Part 3

• We already chose the representation for SimpleSet for you:
– A FiniteSet of points
– A boolean representing whether it is the complement

• Make sure you document the RI and AF
– Will be much simpler than FiniteSet RI and AF

CSE 331 Summer 2023

HW4 – Part 4

• If you were comfortable with the earlier parts, this should be straightforward.
• No new advice!

CSE 331 Summer 2023

HW4 – Part 5

• Coding methods with many cases
• When union-ing two SimpleSets, how many cases are there?

• Homework Hack: Can you define some operations in terms of others?

CSE 331 Summer 2023

HW4 – Part 6

• Start with the toString invariant
• Consider edge cases (e.g. the empty case)

CSE 331 Summer 2023

Before next class...

1. Start on Prep. Quiz: HW4 as early as possible!
– Reminds you about common set operations

• E.g. union, intersection, complement
– Think about some non-trivial cases needed for the homework

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3
	Slide 4: Extra OH?

	Recap
	Slide 5: Kinds of testing
	Slide 6: Kinds of testing
	Slide 7: It’s hard to test your own code
	Slide 8: Approach: Partition the Input Space
	Slide 9: Heuristics for Designing Test Suites
	Slide 10: Testing Heuristics
	Slide 11: Specification Testing
	Slide 12: Practice: Specification Testing
	Slide 13: Heuristic: Clear-box testing
	Slide 14: Heuristic: Clear-box testing
	Slide 15: Practice: Clear- and Black-Box
	Slide 16: Practice: Clear- and Black-Box
	Slide 17: Practice: Clear- and Black-Box
	Slide 18: Practice: Clear- and Black-Box
	Slide 19: Heuristic: Boundary Cases
	Slide 20: Boundary Testing
	Slide 21: Practice: Clear- and Black-Box
	Slide 22: Practice: Clear- and Black-Box
	Slide 23: Practice: Clear- and Black-Box
	Slide 24: Boundary Testing
	Slide 25: Boundary Testing

	Cases
	Slide 26: Heuristic: Special Cases
	Slide 27: Special Cases: Arithmetic Overflow
	Slide 28: Special Cases: Duplicates & Aliases
	Slide 29: sqrt example
	Slide 30: Pragmatics: Regression Testing
	Slide 31: How many tests is enough?
	Slide 32: How many tests is enough?
	Slide 33: Code coverage: statement coverage
	Slide 34: Code coverage: branch coverage
	Slide 35: Code coverage: path coverage
	Slide 36: Code coverage: what is enough?
	Slide 37: Varieties of coverage
	Slide 38: Summary of Heuristics
	Slide 39: More Testing Tips

	HW4 Tips
	Slide 40: HW4 – Background
	Slide 41: HW4 – Part 1
	Slide 42: HW4 – Part 2
	Slide 43: HW4 – Part 3
	Slide 44: HW4 – Part 4
	Slide 45: HW4 – Part 5
	Slide 46: HW4 – Part 6

	Conclusion
	Slide 47: Before next class...

