
CSE 331 Summer 2023

Software Design & Implementation
Topic: Software Tools

CSE 331

💬 Discussion: What’s a movie or show that you’ve enjoyed recently?

CSE 331 Summer 2023

Reminders

• Before lecture today, we had office hours
• Today’s lecture is experimental

• HW4 due Thursday (7/13)

Upcoming Deadlines

CSE 331 Summer 2023

Late Days

“No questions asked” late day policy:
– No more than one late day per assignment.
– No more than six late days total during the quarter.

“Questions asked” policy:
– Email us if you need more time
– Potential Downsides:

• we may not be able to get you feedback quickly
• you may fall behind on future assignments

CSE 331 Summer 2023

Some quick reasoning…

Assertion 1: Students feel motivated to cheat in high-stress environments.
Assertion 2: Many of you find CSE 331 to be a high-stress environment.

 => Many of you feel motivated to cheat

Don’t do it!
– academically dishonest
– it won’t get you a high grade on an assignment
– it will build an unhealthy reliance and degrade your thinking

Instead come to talk to the course staff. We’ll help you!

Last Time…

CSE 331 Summer 2023

Today’s Agenda

• Design Principles
• Design in Java
• Style

• Software Tools
• Tools for Testing

• Test-case Ordering
• Mutation Testing

• Other Tools

CSE 331 Summer 2023

Software Tools

CSE 331 Summer 2023

What is high quality?

Code is high quality when it is

1. Correct
Everything else is of secondary importance

2. Easy to change
Most work is making changes to existing systems

3. Easy to understand
Needed for 1 & 2 above

CSE 331 Summer 2023

How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– type checkers, test runners, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Together can catch >97% of bugs.

technical interviews focus on this
(a.k.a. “reasoning”)

CSE 331 Summer 2023

What is a software tool?

A tool is something that helps us write high-quality software.
– Forward/backward reasoning
– AFs, RIs, and ADTs

A software tool is a piece of software that helps us write high-quality software
– Describes a very large class of things
– We’ve seen a couple of these
– E.g. Git, IntelliJ, IntelliSense, Java compiler

CSE 331 Summer 2023

What is a software tool?

…
SimpleSet.java

FiniteSet.java

Software Tool

Artifact 1

Artifact 2

Artifact 3

…

CSE 331 Summer 2023

What is a software tool?

How do people build software tools?

1. Identify a problem
2. Understand how developers currently solve it
3. Attempt to automate that process

In order to automate it, we need to define the solution precisely.

Until recently…

CSE 331 Summer 2023

What is a software tool?

Disclaimer: I am not an expert!

If you find this work interesting, talk to the experts on campus
– UW PLSE, https://uwplse.org/
– UW NLP, https://www.cs.washington.edu/research/nlp
– Consider joining research https://www.cs.washington.edu/findingresearch

https://uwplse.org/
https://www.cs.washington.edu/research/nlp
https://www.cs.washington.edu/findingresearch

CSE 331 Summer 2023

Tools for Testing

CSE 331 Summer 2023

Testing so far…

In practice, to make a good test suite for a function we need

1. A way make test cases
2. A way to determine if we have enough test cases

An algorithm to generate test suites:

suite = []

while (not enough test cases) {

test = ... // make a new test

suite.add(test)

}

[testing heuristics]
[code coverage]

CSE 331 Summer 2023

Brainstorm: Testing

How could we automate test case generation?

…
SimpleSet.java

FiniteSet.java

Software Tool

Test 1

Test 2

Test 3

…

CSE 331 Summer 2023

Test Generation: History

We can make test cases by reusing the input data from clients.

Benefits Drawbacks

CSE 331 Summer 2023

Test Generation: Random

We can make test cases by randomly picking elements from our input space.

Benefits Drawbacks

CSE 331 Summer 2023

Recall: Example

// returns: x < 0 => returns –x

// otherwise => returns x

int abs(int x) {

 if (x < -2) return -x;

 else return x;

}

What test cases might we want to consider for our test suite?

 {…, -4, -3, -2, -1, 0, 1, 2, 3, …}

is our entire input space.

suite = []

while (not enough test cases) {

test = ... // make a test

suite.add(test)

}

CSE 331 Summer 2023

Test Generation: Random

We can make test cases by randomly picking elements from our input space.

Benefits Drawbacks

Sometimes called fuzzing.

CSE 331 Summer 2023

Test Generation: Random Objects

We can make test cases by randomly applying method calls to an object.

[]

[a] []

add size

[a, b] [][b]

add
set remove

CSE 331 Summer 2023

Test Generation: Specifications

We can make test cases by reading the specification.

Benefits Drawbacks

CSE 331 Summer 2023

Test 1 (30s)

Test 2 (15s)

Test 3 (1s)

Test-case Ordering

Does the order that we execute test cases matter?

We usually prefer to prioritize failing test cases.
– Investigate failures, not successes
– Failed test cases tend to fail early

Test 1

Test 2

Test 3

Test 1 (30s)

Test 2 (15s)

Test 3 (1s)

CSE 331 Summer 2023

Code Coverage

Naive Attempt: how many lines of code did we run?

1
2
3
4
5

assert isEven(2)
assert isEven(4)

coverage = 3/5 = 60%

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false

CSE 331 Summer 2023

Code Coverage

Naive Attempt: how many lines of code did we run?

1
2
3
4
5

assert isEven(2)
assert !isEven(3)

coverage = 100%

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false

CSE 331 Summer 2023

Code Coverage

1
2
3
4
5

isEven(2)
!isEven(3)

coverage = 100%

(even though tests do nothing!)

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false

Naive Attempt: how many lines of code did we run?

CSE 331 Summer 2023

Mutation Testing

Better Attempt: let’s introduce bugs into our code by making “mutant” programs

1
2
3
4
5

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false
function isEven(x):

if (x % 2 == 1):
return true

else:
return false

Mutant #1

→

Mutant #2

→

function isEven(x):
if (x % 2 != 0):

return true
else:

return false

Note: Need to define allowed mutations

CSE 331 Summer 2023

Mutation Testing

Better Attempt: let’s introduce single-line bugs into our code (i.e. mutants)

function isEven(x):
if (x % 2 == 1):

return true
else:

return false

Mutant #1

→

Mutant #2

→

assert isEven(2)
assert isEven(3)

mutants score = 100%

function isEven(x):
if (x % 2 != 0):

return true
else:

return false

CSE 331 Summer 2023

Mutation Testing so far…

In practice, to make a good test suite for a function we need

1. A way make test cases
2. A way to determine if we have enough test cases

An algorithm to generate test suites:

suite = []

while (undetected mutants) {

mutant = ... // introduce a bug that breaks our tests

test = ... // make a test that catches that bug

suite.add(test)

}

[mutation score]

CSE 331 Summer 2023

Mutation Testing

A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

Each test case produced with mutation testing reveals some bug!

So why don’t people use it in practice?
– Need to define the single-line mutations allowed

CSE 331 Summer 2023

Other Tools

Correctness:
– Fault localization
– Program verification
– Program analysis

• Static vs. dynamic
– Program synthesis

Changeability:
– Code generation

Understandability:
– Linters

CSE 331 Summer 2023

Tools for Testing

CSE 331 Summer 2023

Other Tools: Fault Localization

Given your software and a failing test identify where the bug is likely to be.

– Could be approximate (e.g. this region)
– Could be multiple answers

CSE 331 Summer 2023

Other Tools: Automated Program Repair

Given your software and a failing test suite, identify a patch that fixes the code.

CSE 331 Summer 2023

Other Tools: Program Verification

Given your software and formal specification, prove that code is correct.
– Model checking
– Deductive verification

CSE 331 Summer 2023

Other Tools: Program Analysis

Given your software, identify if it has some property.
– Static analysis

• Data-flow analysis for taint checking
– Dynamic analysis

• Program slicing

CSE 331 Summer 2023

Other Tools: Program Synthesis

Given a formal specification, identify a program that satisfies that implementation.

CSE 331 Summer 2023

Other Tools

Changeability:
– Code generation
– Feedback

Understandability:
– Linters

Note: this list is actually very long!

CSE 331 Summer 2023

Before next class...

1. Ask us questions about HW4!
– Lots of good discussion on Ed

2. Section tomorrow will focus on HW5 preparation.

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3: Late Days
	Slide 4: Some quick reasoning…
	Slide 5

	Tools
	Slide 6
	Slide 7: What is high quality?
	Slide 8: How do we ensure correctness?
	Slide 9: What is a software tool?
	Slide 10: What is a software tool?
	Slide 11: What is a software tool?
	Slide 12: What is a software tool?

	Testing
	Slide 13
	Slide 14: Testing so far…
	Slide 15: Brainstorm: Testing
	Slide 16: Test Generation: History
	Slide 17: Test Generation: Random
	Slide 18: Recall: Example
	Slide 19: Test Generation: Random
	Slide 20: Test Generation: Random Objects
	Slide 21: Test Generation: Specifications
	Slide 22: Test-case Ordering

	Mutation Testing
	Slide 23: Code Coverage
	Slide 24: Code Coverage
	Slide 25: Code Coverage
	Slide 26: Mutation Testing
	Slide 27: Mutation Testing
	Slide 28: Mutation Testing so far…
	Slide 29: Mutation Testing
	Slide 30: Other Tools

	Other Tools
	Slide 31
	Slide 32: Other Tools: Fault Localization
	Slide 33: Other Tools: Automated Program Repair
	Slide 34: Other Tools: Program Verification
	Slide 35: Other Tools: Program Analysis
	Slide 36: Other Tools: Program Synthesis
	Slide 37: Other Tools

	Conclusion
	Slide 38: Before next class...

