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Software Design & Implementation
Topic: Software Tools

CSE 331

💬 Discussion: What’s a movie or show that you’ve enjoyed recently?
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Reminders

• Before lecture today, we had office hours
• Today’s lecture is experimental

• HW4   due Thursday (7/13)

Upcoming Deadlines
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Late Days

“No questions asked” late day policy:
– No more than one late day per assignment.
– No more than six late days total during the quarter.

“Questions asked” policy:
– Email us if you need more time
– Potential Downsides:

• we may not be able to get you feedback quickly
• you may fall behind on future assignments
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Some quick reasoning…

Assertion 1: Students feel motivated to cheat in high-stress environments.
Assertion 2: Many of you find CSE 331 to be a high-stress environment.

 => Many of you feel motivated to cheat

Don’t do it!
– academically dishonest
– it won’t get you a high grade on an assignment
– it will build an unhealthy reliance and degrade your thinking

Instead come to talk to the course staff. We’ll help you!



Last Time…
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Today’s Agenda

• Design Principles
• Design in Java
• Style

• Software Tools
• Tools for Testing

• Test-case Ordering
• Mutation Testing

• Other Tools
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Software Tools
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What is high quality?

Code is high quality when it is

1. Correct
Everything else is of secondary importance

2. Easy to change
Most work is making changes to existing systems

3. Easy to understand
Needed for 1 & 2 above
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How do we ensure correctness?

Best practice: use three techniques (we’ll study each)

1. Tools
– type checkers, test runners, etc.

2. Inspection
– think through your code carefully
– have another person review your code

3. Testing
– usually >50% of the work in building software

Together can catch >97% of bugs.

technical interviews focus on this
(a.k.a. “reasoning”)
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What is a software tool?

A tool is something that helps us write high-quality software.
– Forward/backward reasoning
– AFs, RIs, and ADTs

A software tool is a piece of software that helps us write high-quality software
– Describes a very large class of things
– We’ve seen a couple of these
– E.g. Git, IntelliJ, IntelliSense, Java compiler
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What is a software tool?

…
SimpleSet.java

FiniteSet.java

Software Tool

Artifact 1

Artifact 2

Artifact 3

…
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What is a software tool?

How do people build software tools?

1. Identify a problem
2. Understand how developers currently solve it
3. Attempt to automate that process

In order to automate it, we need to define the solution precisely.

Until recently…  
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What is a software tool?

Disclaimer: I am not an expert!

If you find this work interesting, talk to the experts on campus
– UW PLSE, https://uwplse.org/
– UW NLP, https://www.cs.washington.edu/research/nlp
– Consider joining research https://www.cs.washington.edu/findingresearch

https://uwplse.org/
https://www.cs.washington.edu/research/nlp
https://www.cs.washington.edu/findingresearch
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Tools for Testing
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Testing so far…

In practice, to make a good test suite for a function we need

1. A way make test cases 
2. A way to determine if we have enough test cases

An algorithm to generate test suites:

suite = []

while (not enough test cases) { 

test = ... // make a new test

suite.add(test)

}

[testing heuristics]
[code coverage]
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Brainstorm: Testing

How could we automate test case generation?

…
SimpleSet.java

FiniteSet.java

Software Tool

Test 1

Test 2

Test 3

…
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Test Generation: History

We can make test cases by reusing the input data from clients.

Benefits Drawbacks
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Test Generation: Random

We can make test cases by randomly picking elements from our input space.

Benefits Drawbacks
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Recall: Example

// returns:  x < 0     => returns –x

//           otherwise => returns x

int abs(int x) {

   if (x < -2) return -x;

   else       return x;

}

What test cases might we want to consider for our test suite?

  {…, -4, -3, -2, -1, 0, 1, 2, 3, …}

is our entire input space.

suite = []

while (not enough test cases) { 

test = ... // make a test

suite.add(test)

}
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Test Generation: Random

We can make test cases by randomly picking elements from our input space.

Benefits Drawbacks

Sometimes called fuzzing.
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Test Generation: Random Objects

We can make test cases by randomly applying method calls to an object.

[ ]

[ a ] [  ]

add size

[ a, b ] [  ][ b ]

add
set remove
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Test Generation: Specifications

We can make test cases by reading the specification.

Benefits Drawbacks
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Test 1 (30s)

Test 2 (15s)

Test 3 (1s)

Test-case Ordering

Does the order that we execute test cases matter?

We usually prefer to prioritize failing test cases. 
– Investigate failures, not successes
– Failed test cases tend to fail early

Test 1

Test 2 

Test 3

Test 1 (30s)

Test 2 (15s)

Test 3 (1s)
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Code Coverage

Naive Attempt: how many lines of code did we run?

1
2
3
4
5

assert isEven(2)
assert isEven(4)

coverage = 3/5 = 60%

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false
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Code Coverage

Naive Attempt: how many lines of code did we run?

1
2
3
4
5

assert isEven(2)
assert !isEven(3)

coverage = 100%

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false



CSE 331 Summer 2023

Code Coverage

1
2
3
4
5

isEven(2)
!isEven(3)

coverage = 100%

(even though tests do nothing!)

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false

Naive Attempt: how many lines of code did we run?
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Mutation Testing

Better Attempt: let’s introduce bugs into our code by making “mutant” programs

1
2
3
4
5

1
2
3
4
5

function isEven(x):
if (x % 2 == 0):

return true
else:

return false
function isEven(x):

if (x % 2 == 1):
return true

else:
return false

Mutant #1

→

Mutant #2

→

function isEven(x):
if (x % 2 != 0):

return true
else:

return false

Note: Need to define allowed mutations
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Mutation Testing

Better Attempt: let’s introduce single-line bugs into our code (i.e. mutants)

function isEven(x):
if (x % 2 == 1):

return true
else:

return false

Mutant #1

→

Mutant #2

→

assert isEven(2)
assert isEven(3)

mutants score = 100%

function isEven(x):
if (x % 2 != 0):

return true
else:

return false
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Mutation Testing so far…

In practice, to make a good test suite for a function we need

1. A way make test cases 
2. A way to determine if we have enough test cases

An algorithm to generate test suites:

suite = []

while (undetected mutants) { 

mutant = ...  // introduce a bug that breaks our tests

test = ... // make a test that catches that bug

suite.add(test)

}

[mutation score]
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Mutation Testing

A subdomain is revealing for error E if either:
– every input in that subdomain triggers error E, or
– no input in that subdomain triggers error E

Each test case produced with mutation testing reveals some bug!

So why don’t people use it in practice?
– Need to define the single-line mutations allowed
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Other Tools

Correctness:
– Fault localization
– Program verification
– Program analysis

• Static vs. dynamic
– Program synthesis

Changeability:
– Code generation

Understandability:
– Linters
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Tools for Testing
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Other Tools: Fault Localization

Given your software and a failing test identify where the bug is likely to be.

– Could be approximate (e.g. this region)
– Could be multiple answers
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Other Tools: Automated Program Repair

Given your software and a failing test suite, identify a patch that fixes the code.
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Other Tools: Program Verification

Given your software and formal specification, prove that code is correct.
– Model checking
– Deductive verification
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Other Tools: Program Analysis

Given your software, identify if it has some property.
– Static analysis 

• Data-flow analysis for taint checking
– Dynamic analysis

• Program slicing
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Other Tools: Program Synthesis

Given a formal specification, identify a program that satisfies that implementation.
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Other Tools

Changeability:
– Code generation
– Feedback

Understandability:
– Linters

Note: this list is actually very long!
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Before next class...

1. Ask us questions about HW4!
– Lots of good discussion on Ed

2. Section tomorrow will focus on HW5 preparation.
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