
CSE 331 Summer 2023

Software Design & Implementation
Topic: Subtyping

CSE 331

💬 Discussion: How many times a day does a clock’s hands overlap?

CSE 331 Summer 2023

Reminders

• Think of HW5 as starter code for HW6
• Helper classes are implementation details
• See .test vs .expected on message board

• HW5 due Thursday (7/20)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2023

Today’s Agenda
• Equality w/ Inheritance
• Bugs vs. Errors
• Assertions and checkRep
• Exceptions

• Checked exceptions
• Unchecked exceptions

• Miscellaneous
• True Subtyping
• Java Subtyping
• Subtypes vs. Subclasses

CSE 331 Summer 2023

Miscellaneous

CSE 331 Summer 2023

Exceptions vs. Assertions: review

Use an assertion for internal consistency checks that should not fail
– in this class, check your reasoning (pre, post, invariants)

Use an exception when
– used in a dynamic / unpredictable context (client can’t predict)
– in this class, when you want a client to handle a case (requires, pre)
– unlike assertions, exceptions are part of the specification

Use a special value when
– it is a common case (not really exceptional)
– clients are likely (?) to remember to check for it

CSE 331 Summer 2023

Special values in C/C++/others

• For errors and exceptional conditions in Java, use exceptions!

• But C doesn’t have exceptions and older C++ projects avoid them

• Over decades, a common C/C++ idiom has emerged
– error-prone but you can get used to it
– affects how you read code
– put “results” in “out-parameters” (C/C++ feature)
– result indicates success or failure

type result;

if (!computeSomething(&result)) { … return 1; }

// no "exception", use result

• Bad, but less bad than error-code-in-global-variable

CSE 331 Summer 2023

Open-Closed Principle

Software should be open for extension, but closed for modification
– when features are added to your system, do so by adding new classes or

reusing existing ones in new ways
– if possible, don't make changes by modifying existing ones

• changing existing behavior will likely introduce bugs

Related: code to interfaces (esp. for arguments), not to classes
Ex: accept a List parameter, not ArrayList or LinkedList
EJ Tip #52: Refer to objects by their interfaces

CSE 331 Summer 2023

Subtyping

CSE 331 Summer 2023

What is high quality?

Code is high quality when it is

1. Correct
Everything else is of secondary importance

2. Easy to change
Most work is making changes to existing systems

3. Easy to understand
Needed for 1 & 2 above

CSE 331 Summer 2023

What is subtyping?

Sometimes “every B is an A”
– examples in a library database:

• every book is a library holding
• every CD is a library holding

For subtyping, “B is a subtype of A” means:
– “every object that satisfies the rules for a B

 also satisfies the rules for an A”
– (B is a strengthening of A)

Goal: code written using A's spec operates correctly if given a B
– benefit: clarify design, share tests, (sometimes) share code

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE 331 Summer 2023

Subtypes are substitutable

Subtypes are substitutable for supertypes
– Liskov substitution principle
– instances of subtype won't surprise client by failing to satisfy the supertype's

specification
– instances of subtype won't surprise client with more expectations than the

supertype's specification

We say B is a (true) subtype of A if B has a stronger specification than A
– (or is equally strong)
– this is not the same as a Java subtype (e.g. subclass)
– Java subclasses that are not true subtypes: confusing & dangerous

• but unfortunately common

CSE 331 Summer 2023

Subtyping vs. subclassing

Substitution (subtype) is a matter of specifications
– B is a subtype of A iff an object of B can masquerade as an object of A in any

context
– B is a subtype if its spec is is a strengthening of A’s spec

Inheritance (subclass) is a matter of implementations
– factor out repeated code
– to create a new class, write only the differences

Java purposely merges these notions for classes:
– every subclass is a Java subtype
– but not necessarily a true subtype
– and Java casting rules assume true subtypes!

CSE 331 Summer 2023

Inheritance makes adding functionality easy
Suppose we run a web store with a class for products…
class Product {

private String title;

private String description;

private int price; // in cents

public int getPrice() {

return price;

}

public int getTax() {

return (int)(getPrice() * 0.086);

}

…

}

... and we need a class for products that are on sale

CSE 331 Summer 2023

Copy and Paste

class SaleProduct {

private String title;

private String description;

private int price; // in cents

private float factor;

public int getPrice() {

return (int)(price*factor);

}

public int getTax() {

return (int)(getPrice() * 0.086);

}

…

}

Not a good choice. — Why? (hint: properties of high quality code)

CSE 331 Summer 2023

Inheritance makes small extensions small

Better:

class SaleProduct extends Product {

private float factor;

public int getPrice() {

return (int)(super.getPrice()*factor);

}

}

CSE 331 Summer 2023

Benefits of subclassing & inheritance

• Don’t repeat unchanged fields and methods
– in implementation:

• simpler maintenance: fix bugs once (changeability)
– in specification:

• clients who understand the superclass specification need only study novel
parts of the subclass (readability)

• differences not buried under mass of similarities
– modularity: can ignore private fields and methods of superclass (if properly

designed)

• Ability to substitute new implementations (modularity)
– no client code changes required to use new subclasses

CSE 331 Summer 2023

Subclassing can be misused

• Java does not enforce that subclass is a (true) subtype

• Poor design can produce subclasses that depend on implementation details of
superclasses
– super- and sub-classes are often highly interdependent (i.e., tightly coupled)
– “fragile base class problem”

• Subtyping and implementation inheritance are orthogonal!
– subclassing gives you both
– sometimes you want just one. instead use:

• interfaces: subtyping without inheritance
• composition: use implementation without subtyping

CSE 331 Summer 2023

“Fragile Base Class” Problem

class Counter {

private int count;

public void method1() {

count++;

}

public int method2() {

count++;

}

}

18

CSE 331 Summer 2023

“Fragile Base Class” Problem

class Counter {

private int count;

public void method1() {

method2();

}

public int method2() {

count++;

}

}

19

Is this ok?

CSE 331 Summer 2023

“Fragile Base Class” Problem

class Counter {

private int count;

public void method1() {

method2();

}

public int method2() {

count++;

}

}

20

class MyCounter extends Counter {

@Override

public int method2() {

method1();

}

}

CSE 331 Summer 2023

(Non-) Examples

CSE 331 Summer 2023

A tale of two shapes…
interface Rectangle {

// effects: fits shape to given size:

 // this.width = w and this.height = h

void setSize(int w, int h);

}

interface Square extends Rectangle {

 // some code here

}

CSE 331 Summer 2023

Is every square a rectangle?
// effects: fits shape to given size:

// this.width = w and this.height = h

void setSize(int w, int h);

What is wrong with these options for Square’s setSize specification?

1. // effects: sets all edges to given size

void setSize(int edgeLength);

2. // requires: w = h

// effects: fits shape to given size

void setSize(int w, int h);

3. // effects: sets this.width = w and this.height = w

void setSize(int w, int h);

4. // effects: fits shape to given size

// throws BadSizeException if w != h

void setSize(int w, int h) throws BadSizeException;

CSE 331 Summer 2023

Square, Rectangle Unrelated (Subtypes)

Square is not a (true subtype of) Rectangle:
– Rectangle is expected to have a width and height

that can be mutated independently
– Square violates that expectation, could surprise client

Rectangle is not a (true subtype of) Square:
– Square is expected to have equal widths and heights
– Rectangle violates that expectation, could surprise client

Subtyping is not always intuitive
– but it forces clear thinking and prevents errors

Solutions:
– make them unrelated (or siblings)
– make them immutable!

• recovers elementary-school intuition

Rectangle

Square

Square

Rectangle

Shape

Square Rectangle

CSE 331 Summer 2023

Benefits of Immutability

Seen so far:

1. No worries about representation exposure
– mutable objects need copy-in & copy-out

2. No worries about equals consistency violations
– (no good way to check for this at all!)

3. Subtyping relationships more often work as expected
– e.g., Square is then a subtype of Rectangle

CSE 331 Summer 2023

Inappropriate subtyping in the JDK
class Hashtable {

public void put(Object key, Object value){…}

public Object get(Object key){…}

}

// Keys and values are strings.

class Properties extends Hashtable {

public void setProperty(String key, String val) {

put(key,val);

}

public String getProperty(String key) {

return (String)get(key);

}

} Properties p = new Properties();

Hashtable tbl = p;

tbl.put("One", 1);

p.getProperty("One"); // crash!

CSE 331 Summer 2023

Violation of rep invariant

Properties class has a simple rep invariant:
– keys and values are Strings

But client can treat Properties as a Hashtable
– can put in arbitrary content, break rep invariant

From Javadoc:

Because Properties inherits from Hashtable, the put and putAll methods can be
applied to a Properties object. ... If the store or save method is called on a
"compromised" Properties object that contains a non-String key or value, the call
will fail.

CSE 331 Summer 2023

Solution: Composition

class Properties {

private Hashtable hashtable;

public void setProperty(String key, String value) {

hashtable.put(key,value);

}

public String getProperty(String key) {

return (String) hashtable.get(key);

}

…

}

Now, there are no get and put methods on Properties. (Best choice.)

You do not need to be a subclass of
any class whose code you want to use!

CSE 331 Summer 2023

Subtypes vs. Subclasses

CSE 331 Summer 2023

Substitution principle for methods
Constraints on methods

– For each supertype method, subtype must have such a method
• (could be inherited or overridden)

Each overridden method must strengthen (or match) the spec:
– ask nothing more of client (“weaker precondition”)

• requires clause is at most as strict as in supertype’s method
– guarantee at least as much (“stronger postcondition”)

• effects clause is at least as strict as in the supertype method
• no new entries in modifies clause
• promise more (or the same) in returns & throws clauses

– cannot change return values or switch between return and throws

CSE 331 Summer 2023

Spec strengthening: argument/result types
For method inputs:

– argument types in A’s foo could be replaced
with supertypes in B’s foo

– places no extra demand on the clients
– but Java does not have such overriding

• these are different methods in Java!

For method outputs:
– result type of A’s foo may be replaced by

a subtype in B’s foo
– no new exceptions (for values in the domain)
– existing exceptions can be replaced with subtypes

(none of this violates what client can rely on)

LibraryHolding

Book CD

A

B

Shape

Circle Rhombus

CSE 331 Summer 2023

Recall: Subtyping Example

class Product {

private int price; // in cents

public int getPrice() {

return price;

}

public int getTax() {

return (int)(getPrice() * 0.086);

}

}

class SaleProduct extends Product {

private float factor;

public int getPrice() {

return (int)(super.getPrice()*factor);

}

}

CSE 331 Summer 2023

Exercise: True subtypes

Suppose we have a method which, when given one product, recommends another:

class Product {

Product recommend(Product ref);

}

Which of these are possible methods in SaleProduct (a true subtype of Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref)

throws NoSaleException;

// good

// good

// bad

// bad

CSE 331 Summer 2023

Exercise: True subtypes

Suppose we have a method which, when given one product, recommends another:

class Product {

Product recommend(Product ref);

}

Which of these are possible methods in SaleProduct (a Java subtype of Product)?

Product recommend(SaleProduct ref);

SaleProduct recommend(Product ref);

Product recommend(Object ref);

Product recommend(Product ref)

throws NoSaleException;

// good

// compiles, but in Java is

overloading

// bad

// bad

CSE 331 Summer 2023

Before next class...

1. Ask questions about HW5!
– Unique experience to design an ADT yourself
– Focuses on testing and specifications

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	Misc
	Slide 4: Miscellaneous
	Slide 5: Exceptions vs. Assertions: review
	Slide 6: Special values in C/C++/others
	Slide 7: Open-Closed Principle

	Subtyping 1
	Slide 8: Subtyping
	Slide 9: What is high quality?
	Slide 10: What is subtyping?
	Slide 11: Subtypes are substitutable
	Slide 12: Subtyping vs. subclassing
	Slide 13: Inheritance makes adding functionality easy
	Slide 14: Copy and Paste
	Slide 15: Inheritance makes small extensions small
	Slide 16: Benefits of subclassing & inheritance
	Slide 17: Subclassing can be misused
	Slide 18: “Fragile Base Class” Problem
	Slide 19: “Fragile Base Class” Problem
	Slide 20: “Fragile Base Class” Problem
	Slide 21: (Non-) Examples
	Slide 22: A tale of two shapes…
	Slide 23: Is every square a rectangle?
	Slide 24: Square, Rectangle Unrelated (Subtypes)
	Slide 25: Benefits of Immutability
	Slide 26: Inappropriate subtyping in the JDK
	Slide 27: Violation of rep invariant
	Slide 28: Solution: Composition
	Slide 29: Subtypes vs. Subclasses
	Slide 30: Substitution principle for methods
	Slide 31: Spec strengthening: argument/result types
	Slide 32: Recall: Subtyping Example
	Slide 33: Exercise: True subtypes
	Slide 34: Exercise: True subtypes

	Conclusion
	Slide 35: Before next class...

