
CSE 331 Summer 2023

Software Design & Implementation
Topic: Design Patterns II

CSE 331

💬 Discussion: What advice would you give to a future CSE 331 student?

CSE 331 Summer 2022

Reminders

• No extensions on HW9 (one late day only)
• Will not accept any work after Aug. 19 (Friday) at 11pm

• Next Friday we will do project demos in class for HW9

• Prep. Quiz: HW9 due Monday (8/13)
• HW9 due Thursday (8/17)

Upcoming Deadlines

Last Time…

CSE 331 Summer 2022

Today’s Agenda
• More Design Patterns!

• Creational
• Behavioral
• Structural

• HW9 Overview
• Anonymous Inner Classes
• JSON
• Spark Java (demo)
• Fetch (demo)

Finished demo in section

CSE 331 Summer 2023

Review: Factories

Goal: want more flexible abstractions for what class to instantiate

Factory method (also Singleton)
– call a method to create the object
– method can do computation, return subtype, reuse objects

CSE 331 Summer 2023

Review: Bicycle race

class Race {

 public Race() {

 Bicycle bike1 = new Bicycle();

 Bicycle bike2 = new Bicycle();

 // assume lots of other code here

 }

}

Suppose there are different types of races
Each race needs its own type of bicycle…

CSE 331 Summer 2023

Review: Tour de France

class TourDeFrance extends Race {

 public TourDeFrance() {

 Bicycle bike1 = new RoadBicycle();

 Bicycle bike2 = new RoadBicycle();

 …

 }

 …

}

The Tour de France needs a road bike…

CSE 331 Summer 2023

Review: Cyclocross

class Cyclocross extends Race {

 public Cyclocross() {

 Bicycle bike1 = new MountainBicycle();

 Bicycle bike2 = new MountainBicycle();

 …

 }

 …

}

And the cyclocross needs a mountain bike.

Problem: must override the constructor in every Race subclass just to use a different
subclass of Bicycle

CSE 331 Summer 2023

Factory method for Bicycle

class Race {

 Bicycle bike1, bike2;

 Bicycle createBicycle() { return new Bicycle(); }

 public Race() {

 bike1 = createBicycle();

 bike2 = createBicycle();

 ...

 }

}

Solution: use a factory method to avoid choosing which type to create
– let the subclass decide by overriding createBicycle

CSE 331 Summer 2023

Subclasses override factory method
class TourDeFrance extends Race {

 Bicycle createBicycle() {

 return new RoadBicycle();

 }

}

class Cyclocross extends Race {

 Bicycle createBicycle() {

 return new MountainBicycle();

 }

}

• Requires foresight to use factory method in superclass constructor
• Subtyping in the overriding methods!
• Supports other types of reuse (e.g. addBicycle could use it too)

CSE 331 Summer 2023

Factory objects

• Let’s move the method into a separate class
– so that it is part of a factory object

• Advantages:
– no longer risks horrifying bugs
– can pass factories around at runtime

• e.g., let main decide which one to use

• Disadvantages:
– uses bit of extra memory
– debugging can be more complex when decision of which object to create is far

from where it is used

CSE 331 Summer 2023

Factory objects encapsulate factory method(s)

class BicycleFactory {

 Bicycle createBicycle() {

 return new Bicycle();

 }

}

class RoadBicycleFactory extends BicycleFactory {

 Bicycle createBicycle() {

 return new RoadBicycle();

 }

}

class MountainBicycleFactory extends BicycleFactory {

 Bicycle createBicycle() {

 return new MountainBicycle();

 }

}

Note: Ok to return subtypes of Bicycle!

CSE 331 Summer 2023

Using a factory object

class Race {
 BicycleFactory bfactory;

 public Race(BicycleFactory f) {
 bfactory = f;
 Bicycle bike1 = bfactory.createBicycle();
 Bicycle bike2 = bfactory.createBicycle();
 …
 }

 public Race() { this(new BicycleFactory()); }
 …
}

Setting up the flexibility here:

• Factory object stored in a field, set by constructor
• Can take the factory as a constructor-argument
• But an implementation detail (?), so 0-argument constructor too

– Java detail: call another constructor in same class with this

CSE 331 Summer 2023

The subclasses

class TourDeFrance extends Race {
 public TourDeFrance() {
 super(new RoadBicycleFactory());
 }
}

class Cyclocross extends Race {
 public Cyclocross() {
 super(new MountainBicycleFactory());
 }
}

Voila!

– Just call the superclass constructor with a different factory
– Race class had foresight to delegate “what to do to create a bicycle” to the factory

object, making it more reusable

CSE 331 Summer 2023

Separate control over bicycles and races
class TourDeFrance extends Race {

 public TourDeFrance() {
 super(new RoadBicycleFactory()); // or this(…)
 }

 public TourDeFrance(BicycleFactory f) {
 super(f);
 }
 }

By having factory-as-argument option, we can allow arbitrary mixing by client:
 new TourDeFrance(new TricycleFactory())

Less useful in this example: Swapping in different factory object whenever you want

Reminder: Not shown here is also using factories for creating races

CSE 331 Summer 2023

Builder

Builder: object with methods to describe object and then create it
– fits well with immutable classes when clients want to add data a bit at a time

• (mutable Builder creates immutable object)

Example 1: StringBuilder
 StringBuilder buf = new StringBuilder();

 buf.append(“Total distance: ”);

 buf.append(dist);

 buf.append(“ meters”);

 return buf.toString();

CSE 331 Summer 2023

Builder

Builder: object with methods to describe object and then create it
– fits well with immutable classes when clients want to add data a bit at a time

• (mutable Builder creates immutable object)

Example 2: Graph.Builder
– addNode, addEdge, and createGraph methods
– (static inner class Builder can use private constructors)
– containsNode etc. may not need to be especially fast

CSE 331 Summer 2023

Builder Idioms: return this

class FooBuilder {

 public FooBuilder setX(int x) {

 this.x = x;

 return this;

 }

 public FooBuilder setY(int y) { … }

 public Foo build() { ... }

}

You can use this type of Builder like so:

Foo f = new FooBuilder().setX(1).setY(2).build();

CSE 331 Summer 2023

Methods with Many Arguments

• Builders useful for cleaning up methods with too many arguments
– recall the problem that clients can easily mix up argument order

E.g., turn this

myMethod(x, y, true, false, true);

into this

myMethod(x, y, Options.create()

 .setA(true)

 .setB(false)

 .setC(true).build());

This simulates named (rather than positional) argument passing.

CSE 331 Summer 2023

Prototype pattern

• Each object is itself a factory:
– objects contain a clone method that creates a copy

• Useful for objects that are created via a process
– Example: java.awt.geom.AffineTransform

• create by a sequence of calls to translate, scale, etc.
• easiest to make a similar one by copying and changing

– Example: android.graphics.Paint
– Example: JavaScript classes

• use prototypes so every instance doesn’t have all methods stored as fields

CSE 331 Summer 2023

Review: Factories and Prototypes

Goal: want more flexible abstractions for what class to instantiate

Factory method (also Singleton)
– call a method to create the object
– method can do computation, return subtype, reuse objects

Factory object (also Builder)
– Factory has factory methods for some type(s)
– Builder has methods to describe object and then create it

Prototype
– every object is a factory, can create more objects like itself
– call clone to get a new object of same subtype as receiver

CSE 331 Summer 2023

Sharing

Second weakness of constructors: they always return a new object

Singleton: only one object exists at runtime
– factory method returns the same object every time
– (we’ve seen this already)

Interning: only one object with a particular (abstract) value exists at runtime
– factory method can return an existing object (not a new one)
– interning can be used without factory methods

• see String.intern

CSE 331 Summer 2023

Interning pattern

Reuse existing objects instead of creating new ones:

StreetSegment
without string
interning

StreetSegment with
string interningStreet

Segment

1–100

University
Way

02139

101–200

Street
Segment

02139

University
Way

Street
Segment

1–100

02139

101–200

Street
Segment

University
Way

CSE 331 Summer 2023

Interning mechanism
• Maintain a collection of all objects in use
• If an object already appears, return that instead

– (be careful in multi-threaded contexts)

 HashMap<String, String> segNames;

 String canonicalName(String n) {

 if (segNames.containsKey(n)) {

 return segNames.get(n);

 } else {

 segNames.put(n, n);

 return n;

 }

 }

• Java builds this in for strings: String.intern()

Set supports

contains but not get

Why not Set<String> ?

CSE 331 Summer 2023

Interning pattern

• Benefits of interning:

1. May compare with == instead of equals()
• eliminates a source of common bugs!! Although still good to use .equals

2. May save space by creating fewer objects
• (space is less and less likely to be a problem nowadays)
• also, interning can actually waste space if objects are not cleaned up when

no longer needed
– there are additional techniques to fix that (“weak references”)

• Sensible only for immutable objects

CSE 331 Summer 2023

java.lang.Boolean

does not use the Interning pattern

public class Boolean {
 private final boolean value;

 // construct a new Boolean value
 public Boolean(boolean value) {
 this.value = value;
 }

 public static Boolean FALSE = new Boolean(false);
 public static Boolean TRUE = new Boolean(true);

 // factory method that uses interning
 public static Boolean valueOf(boolean value) {
 if (value) {
 return TRUE;
 } else {
 return FALSE;
 }
 }
}

CSE 331 Summer 2023

Recognition of the problem

Javadoc for Boolean constructor:
Allocates a Boolean object representing the value argument.
Note: It is rarely appropriate to use this constructor. Unless a new instance is
required, the static factory valueOf(boolean) is generally a better choice. It is
likely to yield significantly better space and time performance.

Josh Bloch (JavaWorld, January 4, 2004):
The Boolean type should not have had public constructors. There's really no
great advantage to allow multiple trues or multiple falses, and I've seen
programs that produce millions of trues and millions of falses, creating
needless work for the garbage collector.
So, in the case of immutables, I think factory methods are great.

CSE 331 Summer 2023

GoF patterns: three categories
Creational Patterns are about the object-creation process

Factory Method, Abstract Factory, Singleton, Builder, Prototype, Interning …

Structural Patterns are about how objects/classes can be combined
Adapter, Bridge, Composite, Decorator, Façade, Proxy, …

Behavioral Patterns are about communication among objects
Command, Interpreter, Iterator, Mediator, Observer, State, Strategy, Chain of
Responsibility, Visitor, Template Method, …

Green = ones we’ve seen already

CSE 331 Summer 2023

Structural patterns: Wrappers

Wrappers are a thin veneer over an encapsulated class
– modify the interface
– extend behavior
– restrict access

The encapsulated class does most of the work

Some wrappers have qualities of more than one of adapter, decorator, and proxy

Functionality Interface
Adapter same different
Decorator different same
Proxy same same

CSE 331 Summer 2023

Adapter

Real life example: adapter to go from US to UK power plugs
– both do the same thing
– but they have slightly interface expectations

Change an interface without changing functionality
– rename a method
– convert units
– implement a method in terms of another

Example: angles passed in radians vs. degrees
Example: use “old” method names for legacy code

CSE 331 Summer 2023

Adapter example: rectangles
Our code is using this Rectangle interface:

interface Rectangle {

 // grow or shrink this by the given factor

 void scale(float factor);

 // move to the left or right

 void translate(float x, float y);

}

But we want to use a library that has this class:

class JRectangle {

 void scaleWidth(float factor) { ... }

 void scaleHeight(float factor) { ... }

 void shift(float x, float y) { ... }

}

CSE 331 Summer 2023

Adapter example: rectangles

Create an adapter that delegates to Rectangle:

class RectangleAdapter implements Rectangle {

 private JRectangle rect;

 public RectangleAdapter(JRectangle rect) {

 this.rect = rect;

 }

 void scale(float factor) {

 rect.scaleWidth(factor);

 rect.scaleHeight(factor);

 }

 void translate(float x, float y) {

 rect.shift(x, y);

 }

}

CSE 331 Summer 2023

Adapters

• This sort of thing happens a lot
– unless two libraries were designed to work together,

they won’t work together without an adapter

• The example code uses delegation
– special case of composition where the outer object just forwards calls on to one

other object

• Adapters can also remove methods

• Adapters can (in principle) be written by subclassing
– but then all the usual warnings about subclassing apply if you override any

methods of the superclass
– your subclass could easily break when superclass changes

CSE 331 Summer 2023

Decorator

Add functionality without breaking the interface:
1. Add to existing methods to do something extra

• satisfying a stronger specification
2. Provide extra methods

Subclasses are often decorators
– but not always: Java subtypes are not always true subtypes

CSE 331 Summer 2023

Decorator example: Bordered windows

interface Window {

 // rectangle bounding the window

 Rectangle bounds();

 // draw this on the specified screen

 void draw(Screen s);

 ...

}

class WindowImpl implements Window {

 ...

}

CSE 331 Summer 2023

Bordered window implementations
class BorderedWindow1 extends WindowImpl {

 void draw(Screen s) {

 super.draw(s);

 bounds().draw(s);

 }

}

class BorderedWindow2 implements Window {

 Window innerWindow;

 BorderedWindow2(Window innerWindow) {

 this.innerWindow = innerWindow;

 }

 void draw(Screen s) {

 innerWindow.draw(s);

 innerWindow.bounds().draw(s);

 }

}

Delegation permits multiple
borders on a window, or a
window that is both
bordered and shaded

CSE 331 Summer 2023

A decorator can remove functionality

Remove functionality without changing the Java interface
– no longer a true subtype, but sometimes that is necessary

Example: UnmodifiableList
– What does it do about methods like add and put?

• throws an exception
• moves error checking from the compiler to runtime

Problem: UnmodifiableList is not a true subtype of List

Decoration via delegation can create a class with no Java subtyping relationship,
which is often desirable

• Java subtypes that are not true subtypes are confusing
• maybe necessary for UnmodifiableList though

CSE 331 Summer 2023

Proxy

• Same interface and functionality as the wrapped class
– so... uh... wait, what?

• Control access to other objects

– communication: manage network details when using a remote object

– locking: serialize access by multiple clients

– security: permit access only if proper credentials

– creation: object might not yet exist (creation is expensive)
• hide latency when creating object
• avoid work if object is never used

CSE 331 Summer 2023

Structural patterns: Wrappers

Wrappers are a thin veneer over an encapsulated class
– modify the interface
– extend behavior
– restrict access

The encapsulated class does most of the work

Some wrappers have qualities of more than one of adapter, decorator, and proxy

Functionality Interface
Adapter same different
Decorator different same
Proxy same same

CSE 331 Summer 2023

Composite pattern

• Composite permits a client to manipulate either an atomic unit or a collection of
units in the same way
– no need to “always know” if an object is a collection of smaller objects or not

• Good for dealing with “part-whole” relationships

• Used by jQuery in JavaScript

• An extended example…

CSE 331 Summer 2023

Composite example: Bicycle

• Bicycle
– Wheel

• Skewer
– Lever
– Body
– Cam
– Rod

• Hub
• Spokes
• Nipples
• Rim
• Tape
• Tube
• Tire

– Frame
– Drivetrain
– ...

CSE 331 Summer 2023

Methods on components
interface BicycleComponent {

 int weight();

 public float cost();

}

class Skewer extends BicycleComponent {

 float price;

 public float cost() { return price; }

}

class Wheel extends BicycleComponent {

 float assemblyCost;

 Skewer skewer;

 Hub hub;

 ...

 public float cost() {

 return assemblyCost + skewer.cost() + hub.cost() + ...;

 }

}

CSE 331 Summer 2023

Composite example: Libraries

Library
Section (for a given genre)
 Shelf
 Volume
 Page
 Column
 Word
 Letter

interface Text {
 String getText();
}
class Page implements Text {
 String getText() {
 ... return concatenation of column texts ...
 }
}

CSE 331 Summer 2023

Composite example: jQuery

• jQuery provides a function $ that returns one or many objects
– $(“p”) would return a collection of all <p> nodes
– $(“#foo”) would return the object with ID “foo”

• (or returns an empty collection if none exists)

• Calling a method on a jQuery object calls that method on all objects in the
collection:
– $(“p”).hide() would hide all the <p> nodes
– if foo is a node with id “foo”, then
foo.hide() has the same effect as $(“#foo”).hide()

CSE 331 Summer 2023

Before next class...

1. Start on HW9
– React is new, you will likely have many questions
– See examples from lecture + section for ideas

2. Wrap-up any regrades for HW1-8
– Won’t accept late work after the last day of class

	Default Section
	Slide 1: Software Design & Implementation
	Slide 2
	Slide 3

	Design Patterns
	Slide 4: Review: Factories
	Slide 5: Review: Bicycle race
	Slide 6: Review: Tour de France
	Slide 7: Review: Cyclocross
	Slide 8: Factory method for Bicycle
	Slide 9: Subclasses override factory method

	Factory objects
	Slide 10: Factory objects
	Slide 11: Factory objects encapsulate factory method(s)
	Slide 12: Using a factory object
	Slide 13: The subclasses
	Slide 14: Separate control over bicycles and races
	Slide 15: Builder
	Slide 16: Builder
	Slide 17: Builder Idioms: return this
	Slide 18: Methods with Many Arguments
	Slide 19: Prototype pattern
	Slide 20: Review: Factories and Prototypes

	Part 2
	Slide 21: Sharing
	Slide 22: Interning pattern
	Slide 23: Interning mechanism
	Slide 24: Interning pattern
	Slide 25: java.lang.Boolean does not use the Interning pattern
	Slide 26: Recognition of the problem
	Slide 27: GoF patterns: three categories
	Slide 28: Structural patterns: Wrappers
	Slide 29: Adapter
	Slide 30: Adapter example: rectangles
	Slide 31: Adapter example: rectangles
	Slide 32: Adapters
	Slide 33: Decorator
	Slide 34: Decorator example: Bordered windows
	Slide 35: Bordered window implementations
	Slide 36: A decorator can remove functionality
	Slide 37: Proxy
	Slide 38: Structural patterns: Wrappers

	Composite
	Slide 39: Composite pattern
	Slide 40: Composite example: Bicycle
	Slide 41: Methods on components
	Slide 42: Composite example: Libraries
	Slide 43: Composite example: jQuery

	Conclusion
	Slide 65: Before next class...

