
CSE 332 Autumn 2023
Lecture 12: Hashing

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Next topic: Hash Tables

Data Structure Time to insert Time to find Time to delete

Unsorted Array Θ(𝑛) Θ(𝑛) Θ(𝑛)

Unsorted Linked List Θ(𝑛) Θ(𝑛) Θ(𝑛)

Sorted Array Θ 𝑛 Θ(log 𝑛) Θ(𝑛)

Sorted Linked List Θ 𝑛 Θ 𝑛 Θ 𝑛

Binary Search Tree Θ 𝑛 Θ 𝑛 Θ 𝑛

AVL Tree Θ(log 𝑛) Θ(log 𝑛) Θ(log 𝑛)

Hash Table (Worst case) Θ(𝑛) Θ(𝑛) Θ(𝑛)

Hash Table (Average) Θ 1 Θ 1 Θ 1

Two Different ideas of “Average”

• Expected Time
• The expected number of operations a randomly-chosen input uses
• Assumed randomness from somewhere

• Most simply: from the input
• Preferably: from the algorithm/data structure itself

• 𝑓 𝑛 = sum of the running times for each input of size 𝑛 divided by the
number of inputs of size 𝑛

• Amortized Time
• The long-term average per-execution cost (in the worst case)
• Rather than look at the worst case of one execution, look at the total worst

case of a sequential chain of many executions
• Why? The worst case may be guaranteed to be rare

• 𝑓 𝑛 = the sum of the running times from a sequence of 𝑛 sequential calls to
the function divided by 𝑛

Amortized Example

• ArrayList Insert:
• Worst case: Θ(𝑛)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Amortized Example

• ArrayList Insert:
• First 8 inserts: 1 operation each

• 9th insert: 9 operations

• Next 7 inserts: 1 operation each

• 17th insert: 17 operations

• Next 15 inserts: 1 operation each

• …

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

Do 𝑥 operations with cost 1
Do 1 operation with cost 𝑥
Do 𝑥 operations with cost 1
Do 1 operation with cost 2𝑥
Do 2𝑥 operations with cost 1
Do 1 operation with cost 4𝑥
Do 4𝑥 operations with cost 1
Do 1 operation with cost 8𝑥
…
Amortized: each operation cost 2 operations

Θ(1)

Hash Tables

• Motivation:
• Why not just have a gigantic array?

Hash Tables

• Idea:
• Have a small array to store information

• Use a hash function to convert the key into an index
• Hash function should “scatter” the keys, behave as if it randomly assigned keys to indices

• Store key at the index given by the hash function

• Do something if two keys map to the same place (should be very rare)
• Collision resolution

ℎ(𝑘)

Key Object

Index
between 0
and size-1

Insert / find /
delete & value

Example

• Key: Phone Number

• Value: People

• Table size: 10

• ℎ 𝑝ℎ𝑜𝑛𝑒 = number as an integer % 10

• ℎ 8675309 = 9

0 1 2 3 4 5 6 7 8 9

What Influences Running time?

• How “spread out” our input keys are
• How much do keys repeat

• Hash the function itself will take time

• Size of the table relative to the number things inserted

• How well our hash function scatters the keys

• What do we do when two things hash to the same spot

Properties of a “Good” Hash

• Definition: A hash function maps objects to integers

• Should be very efficient
• Calculating the hash should be negligible

• Should randomly scatter objects
• Objects that are similar to each other should be likely to end up far away

• Should use the entire table
• There should not be any indices in the table that nothing can hash to
• Picking a table size that is prime helps with this

• Should use things needed to “identify” the object
• Use only fields you would check for a .equals method be included in calculating the hash
• More fields typically leads to fewer collisions, but less efficient calculation

A Bad Hash (and phone number trivia)

• ℎ 𝑝ℎ𝑜𝑛𝑒 = the first digit of the phone number
• No US phone numbers start with 1 or 0

• If we’re sampling from this class, 2 is by far the most likely

0 1 2 3 4 5 6 7 8 9

Compare These Hash Functions (for strings)

• Let 𝑠 = 𝑠0𝑠1𝑠2 … 𝑠𝑚−1 be a string of length 𝑚
• Let 𝑎(𝑠𝑖) be the ascii encoding of the character 𝑠𝑖

• ℎ1 𝑠 = 𝑎 𝑠0

• ℎ2 𝑠 = σ𝑖=0
𝑚−1 𝑎 𝑠𝑖

• ℎ3 𝑠 = σ𝑖=0
𝑚−1 𝑎 𝑠𝑖 ⋅ 37𝑖

Collision Resolution

• A Collision occurs when we want to insert something into an already-
occupied position in the hash table

• 2 main strategies:
• Separate Chaining

• Use a secondary data structure to contain the items
• E.g. each index in the hash table is itself a linked list

• Open Addressing
• Use a different spot in the table instead

• Linear Probing

• Quadratic Probing

• Double Hashing

0 1 2 3 4 5 6 7 8 9

Separate Chaining Insert

• To insert 𝑘, 𝑣:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Add the key-value pair to the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Find

• To find 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call find with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Separate Chaining Delete

• To delete 𝑘:
• Compute the index using 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• Call delete with the key on the data structure at 𝑡𝑎𝑏𝑙𝑒 𝑖

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Formal Running Time Analysis

• The load factor of a hash table represents the average number of
items per “bucket”

• 𝜆 =
𝑛

𝑠𝑖𝑧𝑒

• Assume we have a has table that uses a linked-list for separate
chaining
• What is the expected number of comparisons needed in an unsuccessful find?

• What is the expected number of comparisons needed in a successful find?

• How can we make the expected running time Θ(1)?

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Load Factor?

0 1 2 3 4 5 6 7 8 9

𝑘, 𝑣 𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣 𝑘, 𝑣𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

𝑘, 𝑣

Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table

0 1 2 3 4 5 6 7 8 9

Linear Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 1 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 % 𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

• Let’s do this together!

Linear Probing: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒 𝑖 is occupied and does not contain 𝑘 then look at 𝑖 + 1 % 𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 2 % 𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 3 % 𝑠𝑖𝑧𝑒

• Repeat until you either find 𝑘 or else you reach an empty cell in the table

Linear Probing: Delete

• Let’s do this together!

Linear Probing: Delete

• Let’s do this together!

	Slide 1: CSE 332 Autumn 2023 Lecture 12: Hashing
	Slide 2: Next topic: Hash Tables
	Slide 3: Two Different ideas of “Average”
	Slide 4: Amortized Example
	Slide 5: Amortized Example
	Slide 6: Hash Tables
	Slide 7: Hash Tables
	Slide 8: Example
	Slide 9: What Influences Running time?
	Slide 10: Properties of a “Good” Hash
	Slide 11: A Bad Hash (and phone number trivia)
	Slide 12: Compare These Hash Functions (for strings)
	Slide 13: Collision Resolution
	Slide 14: Separate Chaining Insert
	Slide 15: Separate Chaining Find
	Slide 16: Separate Chaining Delete
	Slide 17: Formal Running Time Analysis
	Slide 18: Load Factor?
	Slide 19: Load Factor?
	Slide 20: Load Factor?
	Slide 21: Collision Resolution: Linear Probing
	Slide 22: Linear Probing: Insert Procedure
	Slide 23: Linear Probing: Find
	Slide 24: Linear Probing: Find
	Slide 25: Linear Probing: Delete
	Slide 26: Linear Probing: Delete

