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Next topic: Hash Tables

Data Structure Time to find Time to delete

Unsorted Array O(n) O(n) O(n)
Unsorted Linked List O(n) O(n) O(n) ﬁ
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)
AVL Tree O(logn) O(logn) O(logn)
—/\> Hash Table (Worst case) O(n) O(n) O(n)

Hash Table (Average) 0(1) 0(1) 0(1)



Two Different ideas of “Average”
<
* Expected Time

* The expected number of operations a randomly-chosen input uses
* Assumed randomness from somewhere

* Most simply: from the input@,
* Preferably: from the algorithm/data structure itselff——-'
* f(n) = sum of the running times for each input of size n divided by the
a number of inputs of size n o

*Amortized Time <

« The long-term average per-execution cost (in the worst case)

* Rather than look at the'worstcase of one execution, fookat the total worst
case of asequential chain pf many executions

 Why? The worst case may be guaranteed to be rare

e f(n) = the sum of the running timesfrom a sequence of n sequential calls to
the function divided by n




Amortized Example

* ArrayList Insert:

* Worst case: ©(n)
— =
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Amortized Example

* ArrayList Insert:

* First 8 inserts: 1 operation each

PY th ; . . -
9™ insert: 9 operations

* Next 7 inserts: 1 operation each
° th ; . 17 /_\t
17" insert: 17 operations

* Next 15 inserts: 1 operation each
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Do x operations with cost 1

Do T operation with cost x
Do x operations with cost 1

o 1 operation with cost/Z_x
Do 2x operations with cost 1 §_>
___/

Do 1 operation with cost 4x

Do 4x operations with cost 1
Do 1 operation with cost 8x

Amortized: each operation cost 2 operations
0(1)

)/




Hash Tables

* Motivation:
* Why not just have a glgantlc array?




Hash Tables

* |dea:
* Have a ﬂﬂall array to store information

« Use a hash function to convert the key into an t’ndex
. Ha%fmﬁld “scatter” the keys, behave as if it randomly assigned keys to indices

» Store key at the index given by the hash function

* Do something if two keys map to the same place (should be very rare)
* Collision resolution

Index Insert / find /
h(k) between 0 delete & value

and size-1 -

d



Example
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* Key: It@ne NumberA

* Values People
e Table size: 10
(__

. h(w = number as an inte_ger % 10

- h(8675309) = 9
- ) L__J
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What Influences Running time?

* How “spread out” our input keys are
* How much do keys repeat

* Hash the function itself will take time

* Size of the table relative to the number things inserted
 How well our hash function scatters the keys

* What do we do when two things hash to the same spot



Properties of a “Good” Hash

e Definition: A hash function maps objects to integers

e Should be very efficient —=—
e Calculating the hash should be negligible

* Should randomly scatter objects
* Objects that are similar to each other should be likely to end up far away

* Should use the entire table
* There should not be any indices in the table that nothing can hash to
* Picking a table size that is prime helps with this

* Should use things needed to “identify” the object
* Use only fields you would check for a .equals method be included in calculating the hash

* More fields typically leads to fewer collisions, but less efficient calculation
. — ]




A Bad Hash (and phone number trivia)

* h(phone) = the first digit of the phone number
* No US phone numbers start with 1 or O
 If we’re sampling from this class, 2 is by far the most IikeL
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Compare These Hash Functions (for strings)

s
* Let(s)= 505152 - Sm_1 be astring of lengthm > __ DS e

* Let,a(s;) be theasciiencoding of the character s;
chi(s)=a(sy) °/_ ¢,z e

: ym-1 ( 7 D0, g/ﬁf
cha(s) = (E5tals)) 77 0 2

* hy(s) = ( ;galcfggi).37i) Z C/&C VEaw =S
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Collision Resolution

* A Collision occurs when we want to insert something into an already-
occupied position in the hash table

* 2 main strategies:

e Separate Chaining
* Use a secondary data structure to contain the items
* E.g. eachindexin the hash table is itself a linked list
* Open Addressing

* Use a different spot in the table instead
* Linear Probing

* Quadratic Probing
* Double Hashing




Separate Chaining Insert

e Toinsert k, v:
e Compute the index using i = h(k) % size
* Add the key-value pair to the data structure at table|i]

k,v
k,v k,v
o 1 2 3 4 5




Separate Chaining Find

* To find k:
e Compute the index using i = h(k) % size
* Call find with the key on the data structure at tablel|i]

k,v
k,v k,v
o 1 2 3 4 5




Separate Chaining Delete

* To delete k:
e Compute the index using i = h(k) % size
* Call delete with the key on the data structure at table|i]

k,v
k,v k,v
o 1 2 3 4 5




Formal Running Time Analysis

* The load factor of a hash table represents the average number of
items per “bucket”

[ A — L
sSize

* Assume we have a has table that uses a linked-list for separate
chaining
* What is the expected number of comparisons needed in an unsuccessful find?

* What is the expected number of comparisons needed in a successful find?

* How can we make the expected running time 0(1)?



Load Factor?

k,v
k,v k,v
0 2 5




Load Factor?

kv k,v

k,v k,v

k,v k,v k,v

0 2 5 9




Load Factor?

k;v k,v k’v

k,v k;v k,v k;v

k,v k,v k,v k,v k,v| |k,v| |k,v
0 2 4 5 /7 8 9




Collision Resolution: Linear Probing

* When there’s a collision, use the next open space in the table




Linear Probing: Insert Procedure

e Toinsert k, v
 Calculatei = h(k) % size
If table|i] is occupied then try (i + 1)% size
If that is occupied try (i + 2)% size
If that is occupied try (i + 3)% size




Linear Probing: Find

* Let’s do this together!



Linear Probing: Find

* To find key k
 Calculatei = h(k) % size
* |f table|i] is occupied and does not contain k then look at (i + 1) % size
* |f that is occupied and does not contain k then look at (i + 2) % size
* |f that is occupied and does not contain k then look at (i + 3) % size
* Repeat until you either find k or else you reach an empty cell in the table



Linear Probing: Delete

* Let’s do this together!



Linear Probing: Delete

* Let’s do this together!
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