CSE 332 Autumn 2023 Lecture 13: Hashing

Nathan Brunelle

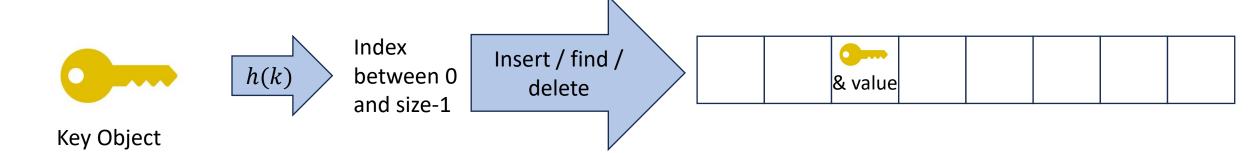
http://www.cs.uw.edu/332

Dictionary Data Structures

Data Structure	Time to insert	Time to find	Time to delete
Unsorted Array	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Unsorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Sorted Array	$\Theta(n)$	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Binary Search Tree	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
AVL Tree	$\Theta(\log n)$	$\Theta(\log n)$	$\Theta(\log n)$
Hash Table (Worst case)	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$
Hash Table (Average)	Θ(1)	Θ(1)	Θ(1)

Hash Tables

- Idea:
 - Have a small array to store information
 - Use a hash function to convert the key into an index
 - Hash function should "scatter" the keys, behave as if it randomly assigned keys to indices
 - Store key at the index given by the hash function
 - Do something if two keys map to the same place (should be very rare)
 - Collision resolution



What Influences Running time?

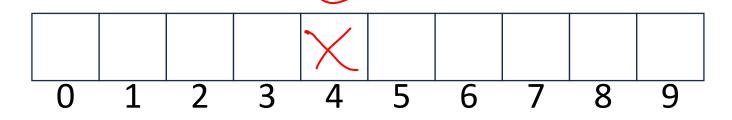
- How "spread out" our input keys are
 - How much do keys repeat
- Hash the function itself will take time
- Size of the table relative to the number things inserted
- How well our hash function scatters the keys
- What do we do when two things hash to the same spot

Properties of a "Good" Hash

- Definition: A hash function maps objects to integers
- Should be very efficient
 - Calculating the hash should be negligible
- Should randomly scatter objects
 - Objects that are similar to each other should be likely to end up far away
- Should use the entire table
 - There should not be any indices in the table that nothing can hash to
 - Picking a table size that is prime helps with this
- Should use things needed to "identify" the object
 - Use only fields you would check for a .equals method be included in calculating the hash
 - More fields typically leads to fewer collisions, but less efficient calculation

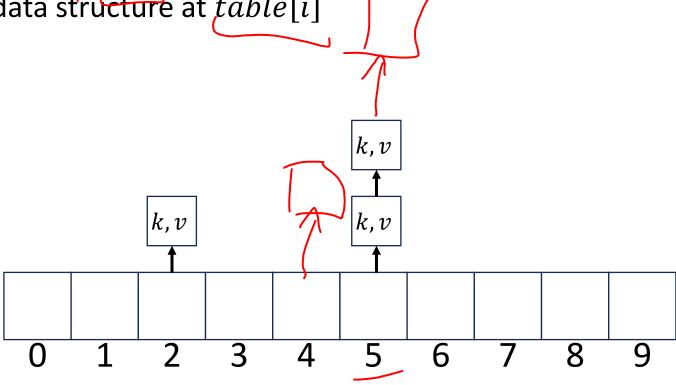
Collision Resolution

- A Collision occurs when we want to insert something into an alreadyoccupied position in the hash table
- 2 main strategies:
 - Separate Chaining
 - Use a secondary data structure to contain the items
 - E.g. each index in the hash table is itself a linked list
 - Open Addressing
 - Use a different spot in the table instead
 - Linear Probing
 - Quadratic Probing
 - Double Hashing



Separate Chaining Insert

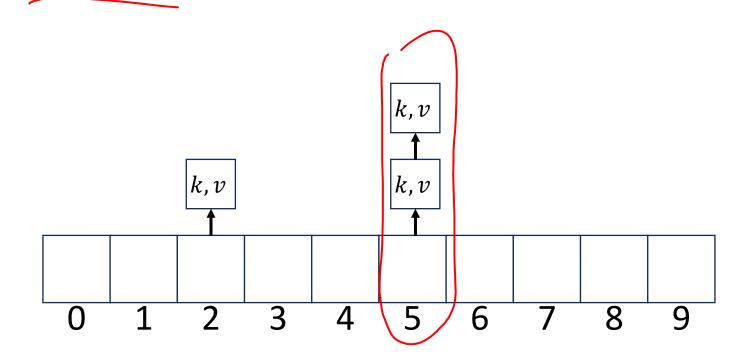
- To insert, k, v:
 - Compute the index using i = h(k) % size
 - Add the key-value pair to the data structure at table[i]



Separate Chaining Find

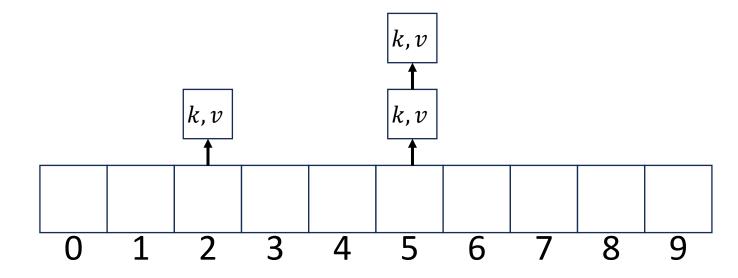
- To find,*k*:

 - Compute the index using i = h(k) % size
 Call find with the key on the data structure at table[i]



Separate Chaining Delete

- To delete k:
 - Compute the index using i = h(k) % size
 - Call delete with the key on the data structure at table[i]



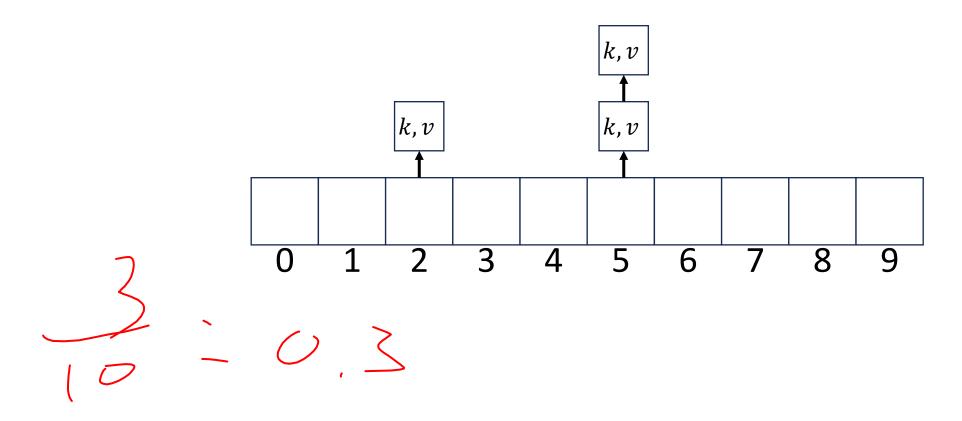
Formal Running Time Analysis

 The load factor of a hash table represents the average number of items per "bucket"

•
$$\lambda = \frac{n}{size}$$

- Assume we have a has table that uses a linked-list for separate chaining
 - What is the expected number of comparisons needed in an unsuccessful find?
 - In general: an unsuccessful find will be linear in the length of the list we hash to
 - λ
 - What is the expected number of comparisons needed in a successful find?
 - $\bullet \frac{\lambda}{2}$
- How can we make the expected running time $\Theta(1)$?
 - We need to make λ constant
 - Make the size of the hash proportional to the number of things in it

Load Factor?



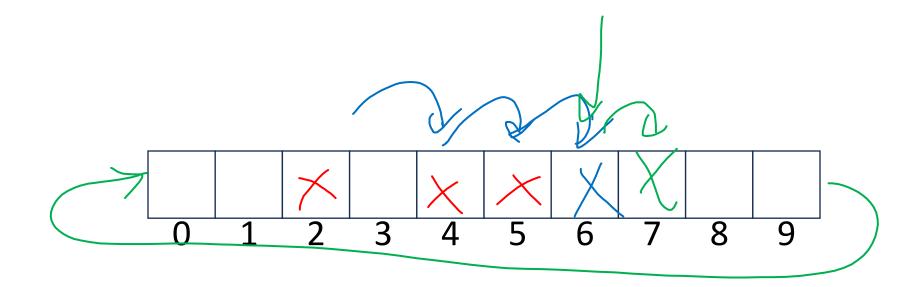
Load Factor?

$$\frac{8}{6} = 0.8$$

Load Factor? k, v|k,v||k,v|k, v|k,v|k, vk, v|k,v|k, vk, v|k,v|3 5 6 8 9 4

Collision Resolution: Linear Probing

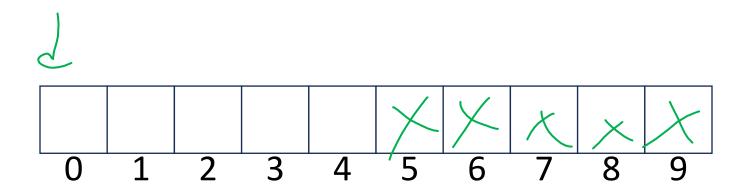
• When there's a collision, use the next open space in the table



Linear Probing: Insert Procedure

- To insert k, v
 - Calculate i = h(k) % size
 - If table[i] is occupied then try((i + 1)% size
 If that is occupied try (i + 2)% size

 - If that is occupied try (i + 3)% size



Linear Probing: Find

- i = h(k)%size
 - If *i* has the key or it's empty, then we're done
 - Otherwise:
 - Check (i + 1)%size if it's there, done else
 - Check (i + 2)%size if it's there, done else
 - Check (i + 3)%size
 - ...
 - Until we hit an empty cell

Linear Probing: Find

- To find key *k*
 - Calculate i = h(k) % size
 - If table[i] is occupied and does not contain k then look at (i + 1) % size
 - If that is occupied and does not contain k then look at (i + 2) % size
 - If that is occupied and does not contain k then look at (i + 3) % size
 - Repeat until you either find k or else you reach an empty cell in the table

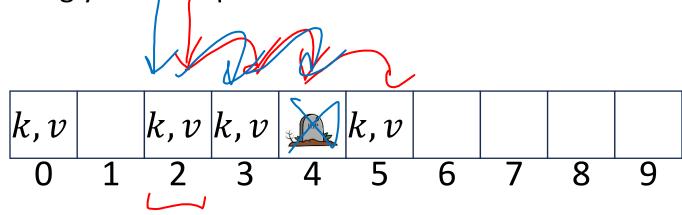
Linear Probing: Delete

- Problem: don't want to leave an empty space when deleting
- Option 1: when we delete, move the "last thing" with a matching hash to that location
- Option 2: "tombstone" deletion. When deleting something, leave a special marker to indicate something used to be there

•

Linear Probing: Delete

- Option 1: Find the last thing with a matching hash, move that into the spot you deleted from
- Option 2: Called "tombstone" deletion. Leave a special object that indicates an object was deleted from there
 - The tombstone does not act as an open space when finding (so keep looking after its reached)
 - When inserting you can replace a tombstone with a new item

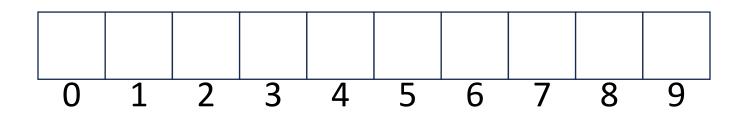


Downsides of Linear Probing

- What happens when λ approaches 1?
 - Runnings times get longer and longer
- What happens when λ exceeds 1?
 - Run out of space
- We need a really small λ

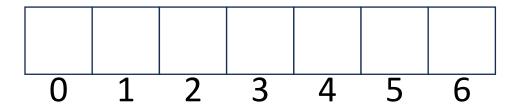
Quadratic Probing: Insert Procedure

- To insert k, v
 - Calculate i = h(k) % size
 - If table[i] is occupied then try $(i + 1^2)\%$ size
 - If that is occupied try $(i + 2^2)\%$ size
 - If that is occupied try $(i + 3^2)\%$ size
 - If that is occupied try $(i + 4^2)\%$ size
 - ...



Quadratic Probing: Example

- Insert:
 - 76
 - 40
 - 48
 - 5
 - 55
 - 47



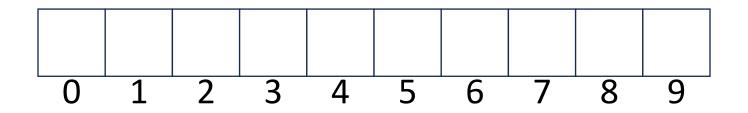
Using Quadratic Probing

- If you probe tablesize times, you start repeating the same indices
- If tablesize is prime and $\lambda < \frac{1}{2}$ then you're guaranteed to find an open spot in at most tablesize/2 probes

 Helps with the clustering problem of linear probing, but does not help if many things hash to the same value

Double Hashing: Insert Procedure

- Given h and g are both good hash functions
- To insert k, v
 - Calculate i = h(k) % size
 - If table[i] is occupied then try (i + g(k)) % size
 - If that is occupied try $(i + 2 \cdot g(k))\%$ size
 - If that is occupied try $(i + 3 \cdot g(k))\%$ size
 - If that is occupied try $(i + 4 \cdot g(k))\%$ size
 - •



Rehashing

- If your load factor λ gets too large, copy everything over to a larger hash table
 - To do this: make a new array with a new hash function
 - Re-insert all items into the new hash table with the new hash function
 - New hash table should be "roughly" double the size (but probably still want it to be prime)