CSE 332 Autumn 2023 Lecture 16: Sorting

Nathan Brunelle
http://www.cs.uw.edu/332

Quicksort

- Like Mergesort:
- Divide and conquer
- $O(n \log n)$ run time (kind of...)
- Unlike Mergesort:
- Divide step is the "hard" part
- Typically faster than Mergesort

Quicksort

Idea: pick a pivot element, recursively sort two sublists around that element

- Divide: select pivot element $p, \operatorname{Partition}(p)$
- Conquer: recursively sort left and right sublists
- Combine: Nothing!

Partition (Divide step)

Given: a list, a pivot p
Start: unordered list

8	5	7	3	12	10	1	2	4	9	6	11

Goal: All elements $<p$ on left, all $>p$ on right

5	7	3	1	2	4	6	8	12	10	9	11

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

Case 1: meet at element $<p$
Swap p with pointer position (2 in this case)

Partition, Procedure

If Begin value $<p$, move Begin right
Else swap Begin value with End value, move End Left Done when Begin = End

Case 2: meet at element $>p$
Swap p with value to the left (2 in this case)

2	5	7	3	6	4	1	8	10	9	11	12

Partition Summary

1. Put p at beginning of list
2. Put a pointer (Begin) just after p, and a pointer (End) at the end of the list
3. While Begin < End:
4. If Begin value $<p$, move Begin right
5. Else swap Begin value with End value, move End Left
6. If pointers meet at element $<p$: Swap p with pointer position
7. Else If pointers meet at element $>p$: Swap p with value to the left

Conquer

Recursively sort Left and Right sublists

Quicksort Run Time (Best)

If the pivot is always the median:

2	5	1	3	6	4	7	8	10	9	11	12

2	1	3	5	6	4	7	8	9	10	11	12

Then we divide in half each time

$$
\begin{aligned}
& T(n)=2 T\left(\frac{n}{2}\right)+n \\
& T(n)=O(n \log n)
\end{aligned}
$$

Quicksort Run Time (Worst)

If the pivot is always at the extreme:

1	5	2	3	6	4	7	8	10	9	11	12

1	2	3	5	6	4	7	8	10	9	11	12

Then we shorten by 1 each time

$$
\begin{gathered}
T(n)=T(n-1)+n \\
T(n)=O\left(n^{2}\right)
\end{gathered}
$$

Quicksort Run Time (Worst)

$$
T(n)=T(n-1)+n
$$

$$
\begin{aligned}
& T(n)=1+2+3+\cdots+n \\
& T(n)=\frac{n(n+1)}{2} \\
& T(n)=O\left(n^{2}\right)
\end{aligned}
$$

Quicksort on a (nearly) Sorted List

First element always yields unbalanced pivot

1	2	3	4	5	6	7	8	9	10	11	12

1	2	3	4	5	6	7	8	9	10	11	12

So we shorten by 1 each time

$$
\begin{gathered}
T(n)=T(n-1)+n \\
T(n)=O\left(n^{2}\right)
\end{gathered}
$$

Good Pivot

- What makes a good Pivot?
- Roughly even split between left and right
- Ideally: median
- There are ways to find the median in linear time, but it's complicated and slow and you're better off using mergesort
- In Practice:
- Pick a random value as a pivot
- Pick the middle of 3 random values as the pivot

Properties of Quick Sort

- Worst Case Running time:
- $\Theta\left(n^{2}\right)$
- But $\Theta(n \log n)$ average! And typically faster than mergesort!
- In-Place?
-Debatable
- Adaptive?
- No!
- Stable?
- No!

More Formal Definition

- Input:
- An array A of items
- A comparison function for these items
- Given two items x and y, we can determine whether $x<y, x>y$, or $x=y$
- Output:
- A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Permutation: a sequence of the same items but perhaps in a different order

Improving Running time

- Recall our definition of the sorting problem:
- Input:
- An array A of items
- A comparison function for these items
- Given two items x and y, we can determine whether $x<y, x>y$, or $x=y$
- Output:
- A permutation of A such that if $i \leq j$ then $A[i] \leq A[j]$
- Under this definition, it is impossible to write an algorithm faster than $n \log n$ asymptotically.
- Observation:
- Sometimes there might be ways to determine the position of values without comparisons!

"Linear Time" Sorting Algorithms

- Useable when you are able to make additional assumptions about the contents of your list (beyond the ability to compare)
- Examples:
- The list contains only positive integers less than k
- The number of distinct values in the list is much smaller than the length of the list
- The running time expression will always have a term other than the list's length to account for this assumption
- Examples:
- Running time might be $\Theta(k \cdot n)$ where k is the range/count of values

BucketSort

- Assumes the array contains integers between 0 and $k-1$ (or some other small range)
- Idea:
- Use each value as an index into an array of size k
- Add the item into the "bucket" at that index (e.g. linked list)
- Get sorted array by "appending" all the buckets

BucketSort Running Time

- Create array of k buckets
- Either $\Theta(k)$ or $\Theta(1)$ depending on some things...
- Insert all n things into buckets
- $\Theta(n)$
- Empty buckets into an array
- $\Theta(n+k)$
- Overall:
- $\Theta(n+k)$
- When is this better than mergesort?

Properties of BucketSort

- In-Place?
- No
- Adaptive?
- No
- Stable?
- Yes!

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

103	801	401	323	255	823	999	101	113	901	555	512	245	800	018	121
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15

Place each element into a "bucket" according to its 1's place

800	$\begin{aligned} & 801 \\ & 401 \\ & 101 \\ & 901 \\ & 121 \end{aligned}$	512	$\begin{aligned} & 103 \\ & 323 \\ & 823 \\ & 113 \end{aligned}$		$\begin{aligned} & 255 \\ & 555 \\ & 245 \end{aligned}$			018	999
0	1	2	3	4	5	6	7	8	9

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

800	801								
401		103							
101	512	323		255					
901		853			018	999			
	121		113		245				
0	1	2	3	4	5	6	7	8	9

Place each element into a "bucket" according to its 10's place

800 801									
401	512	121							
101	113	323		245	255				999
901	018	823							
103									

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

RadixSort

- Radix: The base of a number system
- We'll use base 10 , most implementations will use larger bases
- Idea:
- BucketSort by each digit, one at a time, from least significant to most significant

	101								
018	103	245	323	401	512			800	
	113	255							
121							801		
823	999								
	0	1	2	3	4	5	6	7	8

Convert back into an array

018	811	103	113	121	245	255	323	401	512	555	800	801	823	901	999

RadixSort Running Time

- Suppose largest value is m
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
- $\Theta(n+k)$
- Repeat once per each digit
- $\log _{b} m$ iterations
- Overall:
- $\Theta\left(n \log _{b} m+b \log _{b} m\right)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

ARPANET

Undirected Graphs
Vertices/Nodes
Definition: $G=(V, E)$

Directed Graphs
Definition: $G=(V, \underset{\text { Edges }}{E}$

Self-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

Weighted Graphs
Vertices/Nodes
Definition: $G=(V, E)$
$w(e)=$ weight of edge e

Graph Applications

- For each application below, consider:
- What are the nodes, what are the edges?
- Is the graph directed?
- Is the graph simple?
- Is the graph weighted?
- Facebook friends
- Twitter followers
- Java inheritance
- Airline Routes

Some Graph Terms

- Adjacent/Neighbors
- Nodes are adjacent/neighbors if they share an edge
- Degree

- Number of "neighbors" of a vertex
- Indegree
- Number of incoming neighbors
- Outdegree
- Number of outgoing neighbors

Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
- Add Edge
- Remove Edge
- Check if Edge Exists
- Get Neighbors (incoming)
- Get Neighbors (outgoing)

Adjacency List

[^0]| 1 | 2 | 3 | | |
| :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 5 | |
| 3 | 1 | 2 | 4 | 6 |
| 4 | 3 | 5 | 6 | |
| | | | | |
| 5 | 2 | 4 | 7 | 8 |
| 6 | 3 | 4 | 7 | |
| 7 | 5 | 6 | 8 | 9 |
| 8 | 5 | 7 | 9 | |
| 9 | 7 | 8 | | |
| | | | | |

Adjacency List (Weighted)

Time/Space Tradeoffs
Space to represent: $\Theta(n+m)$
Add Edge: Θ (1)
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(n)$

$$
\begin{array}{|l|}
|V|=n \\
|E|=m
\end{array}
$$

Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

1	2	3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		

Adjacency Matrix

Time/Space Tradeoffs
Space to represent: $\Theta(?)$
Add Edge: Θ (?)
Remove Edge: $\Theta(?)$
Check if Edge Exists: Θ (?)

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Get Neighbors (incoming): $\Theta(?)$ Get Neighbors (outgoing): $\Theta(?)$

Adjacency Matrix (weighted)

Time/Space Tradeoffs
Space to represent: $\Theta\left(n^{2}\right)$
Add Edge: $\Theta(1)$
Remove Edge: $\Theta(1)$
Check if Edge Exists: $\Theta(1)$

$$
\begin{aligned}
& |V|=n \\
& |E|=m
\end{aligned}
$$

Get Neighbors (incoming): $\Theta(n)$ Get Neighbors (outgoing): $\Theta(n)$

Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Definition: Path

$$
\text { A sequence of nodes }\left(v_{1}, v_{2}, \ldots, v_{k}\right)
$$

Simple Path:
A path in which each node appears at most once

Cycle:
A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2}

Definition: (Strongly) Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2}

Connected

Not (strongly) Connected

Definition: Weakly Connected Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is a path from v_{1} to v_{2} ignoring direction of edges

Weakly Connected

Weakly Connected

Definition: Complete Graph

A Graph $G=(V, E)$ s.t. for any pair of nodes $v_{1}, v_{2} \in V$ there is an edge from v_{1} to v_{2}

Complete Undirected Graph

Complete
Directed Graph

Complete Directed Non-simple Graph

Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta\left(|V|^{2}\right)$:
- Undirected and simple: $\frac{|V|(|V|-1)}{2}$
- Directed and simple: $|V|(|V|-1)$
- Direct and non-simple (but no duplicates): $|V|^{2}$
- If the graph is connected, the minimum number of edges is $|V|-1$
- If $|E| \in \Theta\left(|V|^{2}\right)$ we say the graph is dense
- If $|E| \in \Theta(|V|)$ we say the graph is sparse
- Because $|E|$ is not always near to $|V|^{2}$ we do not typically substitute $|V|^{2}$ for $|E|$ in running times, but leave it as a separate variable

Definition: Tree

A Graph $G=(V, E)$ is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

A Tree

A Rooted Tree

[^0]: Time/Space Tradeoffs
 Space to represent: $\Theta(n+m)$
 Add Edge: $\Theta(1)$
 Remove Edge: $\Theta(1)$
 Check if Edge Exists: $\Theta(n)$
 Get Neighbors (incoming): $\Theta(n+m)$
 Get Neighbors (outgoing): $\Theta(\operatorname{deg}(v))$

