
CSE 332 Autumn 2023
Lecture 18: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 1’s place

103 801 401 323 255 823 999 101

0 1 2 3 4 5 6 7

113 901 555 512 245 800 018 121

8 9 10 11 12 13 14 15

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 10’s place

999018
255
555
245

103
323
823
113

512

0 1 2 3 4 5 6 7

801
401
101
901
121

800

8 9

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into
a “bucket” according to
its 100’s place

999
255
555

245
121
323
823

0 1 2 3 4 5 6 7

512
113
018

800
801
401
101
901
103

8 9
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea:
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
901
999

800
801
823

512
555

401323
245
255

0 1 2 3 4 5 6 7

101
103
113
121

018

8 9

018 811 103 113 121 245 255 323

0 1 2 3 4 5 6 7

401 512 555 800 801 823 901 999

8 9 10 11 12 13 14 15

RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑏)

• Repeat once per each digit
• log𝑏𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏𝑚 + 𝑏 log𝑏𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?

ARPANET

7

Undirected Graphs

8

1

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Directed Graphs

9

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

1

2

3

4

5

6
7

9

8

Self-Edges and Duplicate Edges

10

1

2

3

4

5

6
7

9

8

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

Weighted Graphs

11

10

2

6

11

9
5

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }

Graph Applications

• For each application below, consider:
• What are the nodes, what are the edges?

• Is the graph directed?

• Is the graph simple?

• Is the graph weighted?

• Facebook friends

• Twitter followers

• Java inheritance

• Airline Routes

Some Graph Terms

• Adjacent/Neighbors
• Nodes are adjacent/neighbors if they share an

edge

• Degree
• Number of “neighbors” of a vertex

• Indegree
• Number of incoming neighbors

• Outdegree
• Number of outgoing neighbors

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)

Adjacency List

15

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(𝑛 +𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency List (Weighted)

16

1

2

3

4

5

6

7

8

9

2 3

1 3 5

1 2 4 6

3 5 6

2 4 7 8

3 4 7

5 6 8 9

5 7 9

7 8

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(?)
Get Neighbors (outgoing): Θ(?)

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency Matrix

17

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

1

2

3

4

5

6
7

9

8

Time/Space Tradeoffs
Space to represent: Θ(?)
Add Edge: Θ(?)
Remove Edge: Θ(?)
Check if Edge Exists: Θ(?)
Get Neighbors (incoming): Θ(?)
Get Neighbors (outgoing): Θ ?

𝑉 = 𝑛
𝐸 = 𝑚

Adjacency Matrix (weighted)

18

A

B

C

D

E

F

G

H

I

A B C D E F G H I

1 1

1 1 1

1 1 1

1 1 1

1 1 1 1

1 1 1

1 1 1 1

1 1 1

1 1

1

Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

𝑉 = 𝑛
𝐸 = 𝑚

10

2

6

11

95

8

3

7

3

1

8

12

91

2

3

4

5

6
7

9

8

Aside

• Almost always, adjacency lists are the better choice

• Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations aren’t that bad

Definition: Path

20

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘)
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node
appears at most once

Cycle:
A path which starts and
ends in the same place

Definition: (Strongly) Connected Graph

21

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Definition: (Strongly) Connected Graph

22

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2

1

2

3

4

5

6
7

9

8

1

2

3

4

5

6
7

9

8

Connected Not (strongly) Connected

Definition: Weakly Connected Graph

23

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
ignoring direction of edges

1

2

3

4

5

6
7

9

8

Weakly Connected

1

2

3

4

5

6
7

9

8

Weakly Connected

Definition: Complete Graph

24

A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2

Complete
Undirected Graph

Complete
Directed Graph

1 2

3 4

1 2

3 4

Complete Directed
Non-simple Graph

1 2

3 4

Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple:
|𝑉|(|𝑉|−1)

2

• Directed and simple: |𝑉|(|𝑉| − 1)

• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2 we say the graph is dense

• If 𝐸 ∈ Θ |𝑉| we say the graph is sparse

• Because 𝐸 is not always near to 𝑉 2 we do not typically substitute
𝑉 2 for 𝐸 in running times, but leave it as a separate variable

Definition: Tree

26

A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Tree

1

2

3

4

5

6
7

9

8

A Rooted Tree

1

2

3

4

56

7 9

8

Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors
of neighbors of 𝑠, …

• Output:
• How long is the shortest path?

• Is the graph connected?

27

1

2

3

4

5

6
7

9

8

BFS

28

void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.enqueue(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

Shortest Path (unweighted)

29

int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.dequeue();
 layer = depth of current;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 depth of v = layer + 1;
 found.enqueue(v);
 }
 }
 }
 return depth of t;
}

Idea: when it’s seen, remember
its “layer” depth!

1

2

3

4

5

6
7

9

8

Depth-First Search

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

31

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

32

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

DFS Recursively (more common)

33

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Using DFS
• Consider the “visited times” and “done times”

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 34

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7

Visited : 3
Done: 6

Visited : 4
Done: 5

1

2

3

4

5

6
7

9

8

Visited : 9
Done: 14

Visited : 10
Done: 13

Visited : 11
Done: 12

Cycle Detection

35

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

36

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8

Topological Sort

37

Idea: List in descending
order by “done” time

List topologicalSort(graph){
 doneList = new List();
 for (v : graph.vertices()){
 if (! v marked as “seen”){
 topSortRec(graph, v, doneList);
 }
 }
 doneList.reverse();
 return doneList;
}
void topSortRec(graph, curr, doneList){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 topSortRec(graph, v);
 }
 }
 mark curr as “done”;
 doneList.add(curr);
}

1

2

3

4

5

6
7

9

8

	Slide 1: CSE 332 Autumn 2023 Lecture 18: Graphs
	Slide 2: RadixSort
	Slide 3: RadixSort
	Slide 4: RadixSort
	Slide 5: RadixSort
	Slide 6: RadixSort Running Time
	Slide 7: ARPANET
	Slide 8: Undirected Graphs
	Slide 9: Directed Graphs
	Slide 10: Self-Edges and Duplicate Edges
	Slide 11: Weighted Graphs
	Slide 12: Graph Applications
	Slide 13: Some Graph Terms
	Slide 14: Graph Operations
	Slide 15: Adjacency List
	Slide 16: Adjacency List (Weighted)
	Slide 17: Adjacency Matrix
	Slide 18: Adjacency Matrix (weighted)
	Slide 19: Aside
	Slide 20: Definition: Path
	Slide 21: Definition: (Strongly) Connected Graph
	Slide 22: Definition: (Strongly) Connected Graph
	Slide 23: Definition: Weakly Connected Graph
	Slide 24: Definition: Complete Graph
	Slide 25: Graph Density, Data Structures, Efficiency
	Slide 26: Definition: Tree
	Slide 27: Breadth-First Search
	Slide 28: BFS
	Slide 29: Shortest Path (unweighted)
	Slide 30: Depth-First Search
	Slide 31: Depth-First Search
	Slide 32: DFS (non-recursive)
	Slide 33: DFS Recursively (more common)
	Slide 34: Using DFS
	Slide 35: Cycle Detection
	Slide 36: Topological Sort
	Slide 37: Topological Sort

