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RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Place each element into 
a “bucket” according to 
its 1’s place
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• We’ll use base 10, most implementations will use larger bases
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RadixSort
• Radix: The base of a number system

• We’ll use base 10, most implementations will use larger bases

• Idea: 
• BucketSort by each digit, one at a time, from least significant to most significant

Convert back into an array
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RadixSort Running Time

• Suppose largest value is 𝑚

• Choose a radix (base of representation) 𝑏

• BucketSort all 𝑛 things using 𝑏 buckets
• Θ(𝑛 + 𝑏)

• Repeat once per each digit
• log𝑏𝑚 iterations

• Overall:
• Θ 𝑛 log𝑏𝑚 + 𝑏 log𝑏𝑚

• In practice, you can select the value of 𝑏 to optimize running time

• When is this better than mergesort?
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Undirected Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Directed Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }
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Self-Edges and Duplicate Edges
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Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with  Neither self-edges nor duplicate edges are called simple graphs



Weighted Graphs
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Definition: 𝐺 = (𝑉, 𝐸)
Vertices/Nodes

Edges
𝑤 𝑒 = weight of edge 𝑒

𝑉 = {1,2,3,4,5,6,7,8,9}

𝐸 = { 1,2 , 2,3 , (1,3), … }



Graph Applications

• For each application below, consider:
• What are the nodes, what are the edges?

• Is the graph directed?

• Is the graph simple?

• Is the graph weighted?

• Facebook friends

• Twitter followers

• Java inheritance

• Airline Routes



Some Graph Terms

• Adjacent/Neighbors
• Nodes are adjacent/neighbors if they share an 

edge

• Degree
• Number of “neighbors” of a vertex

• Indegree
• Number of incoming neighbors

• Outdegree
• Number of outgoing neighbors
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Graph Operations

• To represent a Graph (i.e. build a data structure) we need:
• Add Edge

• Remove Edge

• Check if Edge Exists

• Get Neighbors (incoming)

• Get Neighbors (outgoing)



Adjacency List
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Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(𝑛 +𝑚)
Get Neighbors (outgoing): Θ deg 𝑣

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency List (Weighted)
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Time/Space Tradeoffs
Space to represent: Θ(𝑛 +𝑚)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(𝑛)
Get Neighbors (incoming): Θ(? )
Get Neighbors (outgoing): Θ(? )

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency Matrix
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Time/Space Tradeoffs
Space to represent: Θ(? )
Add Edge: Θ(? )
Remove Edge: Θ(? )
Check if Edge Exists: Θ(? )
Get Neighbors (incoming): Θ(? )
Get Neighbors (outgoing): Θ ?

𝑉 = 𝑛 
𝐸 = 𝑚 



Adjacency Matrix (weighted)
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Time/Space Tradeoffs
Space to represent: Θ(𝑛2)
Add Edge: Θ(1)
Remove Edge: Θ(1)
Check if Edge Exists: Θ(1)
Get Neighbors (incoming): Θ(𝑛)
Get Neighbors (outgoing): Θ 𝑛

𝑉 = 𝑛 
𝐸 = 𝑚 
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Aside

• Almost always, adjacency lists are the better choice

• Most graphs are missing most of their edges, so the adjacency list is 
much more space efficient and the slower operations aren’t that bad



Definition: Path
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A sequence of nodes (𝑣1, 𝑣2, … , 𝑣𝑘) 
s.t. ∀1 ≤ 𝑖 ≤ 𝑘 − 1, 𝑣𝑖 , 𝑣𝑖+1 ∈ 𝐸

Simple Path:
A path in which each node 
appears at most once

Cycle:
A path which starts and 
ends in the same place



Definition: (Strongly) Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
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Definition: (Strongly) Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2
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Definition: Weakly Connected Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is a path from 𝑣1 to 𝑣2 
ignoring direction of edges
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Definition: Complete Graph
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A Graph 𝐺 = (𝑉, 𝐸) s.t. for any pair of nodes 
𝑣1, 𝑣2 ∈ 𝑉 there is an edge from 𝑣1 to 𝑣2
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Graph Density, Data Structures, Efficiency

• The maximum number of edges in a graph is Θ |𝑉|2 :

• Undirected and simple: 
|𝑉|(|𝑉|−1)

2

• Directed and simple: |𝑉|(|𝑉| − 1)

• Direct and non-simple (but no duplicates): |𝑉|2

• If the graph is connected, the minimum number of edges is 𝑉 − 1

• If 𝐸 ∈ Θ 𝑉 2  we say the graph is dense

• If 𝐸 ∈ Θ |𝑉|  we say the graph is sparse

• Because 𝐸  is not always near to 𝑉 2 we do not typically substitute 
𝑉 2 for 𝐸  in running times, but leave it as a separate variable



Definition: Tree
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A Graph 𝐺 = (𝑉, 𝐸) is a tree if it is undirect, 
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”
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Breadth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit all neighbors of 𝑠, then all neighbors 
of neighbors of 𝑠, …

• Output: 
• How long is the shortest path?

• Is the graph connected?

27

1

2

3

4

5

6
7

9

8



BFS
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void bfs(graph, s){
 found = new Queue();
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.enqueue(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



Shortest Path (unweighted)
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int shortestPath(graph, s, t){
 found = new Queue();
 layer = 0;
 found.enqueue(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.dequeue();
  layer = depth of current;
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    depth of v = layer + 1;
    found.enqueue(v);
   }
  }
 }
 return depth of t; 
}   

Idea: when it’s seen, remember 
its “layer” depth!
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Depth-First Search



Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS (non-recursive)
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void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.pop();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.push(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



DFS Recursively (more common)
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Using DFS
• Consider the “visited times” and “done times” 

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎  34
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Done: 14 
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Cycle Detection
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boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
  if (v marked “visited” && ! v marked “done”){
   cycleFound=true;
  }
  if (! v marked “visited” && !cycleFound){
   cycleFound = hasCycle(graph, v);
  }
 }
 mark curr as “done”;
 return cycleFound;
}   
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Idea: Look for a back edge!



Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a 
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the 
permutation
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Topological Sort
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Idea: List in descending 
order by “done” time

List topologicalSort(graph){
 doneList = new List();
 for (v : graph.vertices()){
  if (! v marked as “seen”){
   topSortRec(graph, v, doneList);
  }
 }
 doneList.reverse();
 return doneList;
}
void topSortRec(graph, curr, doneList){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
    topSortRec(graph, v);
  }
 }
 mark curr as “done”;
 doneList.add(curr);
}   
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