CSE 332 Autumn 2023
Lecture 18: Graphs

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant

103 | 801 | 401 | 323 | 255 | 823|999 | 101 | 113 | 901 | 555 | 512 | 245 | 800 | 018 | 121
o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
801 103
Place each element into o1 323 22>
_ 800 | 101 | 512 | .°7 555 018 | 999
a “bucket” according to 901 113 245
its 1’s place 121
o 1 2 3 5 8 9

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
801
401 ;gg 255
800 | 101 | 512 555 018 | 999
823
901 245
191 113
800
o 1 2 3 4 5 6 7 8 9
sl ||
101 | 113323 245 | .. 999
Place each element into 001 | 018 | 823
a “bucket” according to 103

its 10’s place o 1 2 3 4 5 6 7 8 9

e Radix: The base of a number system

RadixSort

 We'll use base 10, most implementations will use larger bases

* BucketSort by each digit, one at a time, from least significant to most significant

e |dea:
800
801
401 >1271121 255
113 | 323 245 999
101 018 | 823 =5
901
103
0 1 2 3 4 5 6 7 9

Place each element into
a “bucket” according to
its 100’s place

101

800
103 | 245 512 901
018 113 | 255 3231401 555 Zg; 999
121
0 1 2 3 £ 5 8 9

RadixSort

e Radix: The base of a number system
* We'll use base 10, most implementations will use larger bases

* |dea:
* BucketSort by each digit, one at a time, from least significant to most significant
101
800
103 | 245 512 901
0181113 | 255 | 323 | 401 | 555 :gg 999 Convert back into an array
121

018 | 811|103 | 113 {121 | 245 | 255|323 (401|512 |555|800 (801|823 901|999

RadixSort Running Time

e Suppose largest value is m
* Choose a radix (base of representation) b

* BucketSort all n things using b buckets
- O(n+b)
* Repeat once per each digit
* log, m iterations
* Overall:
* O(nlog, m+ blog, m)
* |n practice, you can select the value of b to optimize running time

* When is this better than mergesort?

ARPANET

international

THEu

UNIVERSITY
OF UTAH

UﬂdireCted Graphs Vertices/Nodes
Definition: G = (V, E)

Edges

V =1{1,2,3,4,5,6,7,8,9)
E={(12),(23),(13),..}

DireCted Graphs Vertices/Nodes
Definition: G = (V, E)

Edges

V =1{1,2,3,4,5,6,7,8,9)
E={(12),(23),(13),..}

Selt-Edges and Duplicate Edges

Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice).
Some may also have self-edges (e.g. here there is an edge from 1 to 1).
Graph with Neither self-edges nor duplicate edges are called simple graphs

10

Welghted Graphs Vertices/Nodes
Definition: G = (V, E)

Edges

w(e) = weight of edge e

8 vV =1{1,2,3,4,5,6,7,8,9}
E=1{(1,2),0273),(13),..}

11

Graph Applications

* For each application below, consider:
 What are the nodes, what are the edges?
* |s the graph directed?
* |s the graph simple?
* |s the graph weighted?

* Facebook friends
* Twitter followers
* Java inheritance
* Airline Routes

Some Graph Terms

* Adjacent/Neighbors

* Nodes are adjacent/neighbors if they share an
edge

* Degree
* Number of “neighbors” of a vertex

* Indegree
 Number of incoming neighbors

e Qutdegree
* Number of outgoing neighbors

Graph Operations

* To represent a Graph (i.e. build a data structure) we need:
* Add Edge
* Remove Edge
* Check if Edge Exists
e Get Neighbors (incoming)
* Get Neighbors (outgoing)

AdJacenc List

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge: ©(1)

Remove Edge: O(1) V]| =n
Check if Edge Exists: O(n) |E| - m
Get Neighbors (incoming): ©®(n + m)
Get Neighbors (outgoing): @(deg(v))

15

AdJacenc List (Welghted)

Time/Space Tradeoffs

Space to represent: O(n + m)
Add Edge: ©(1)

Remove Edge: ©(1) V| =n
Check if Edge Exists: O(n) |E] = m
Get Neighbors (incoming): ©(?)
Get Neighbors (outgoing): ©(?7)

16

Adjacency Matrix

Time/Space Tradeoffs
Space to represent: O(?)
Add Edge: O(?)

Remove Edge: ©(?) V| =n
Check if Edge Exists: O(?7) |E] = m
Get Neighbors (incoming): ©(?)
Get Neighbors (outgoing): 0(?)

17

AdJacenc I\/Iatrlx (Welghted)

A

B

C

D

E

Time/Space Tradeoffs .

Space to represent: ©(n®) c
Add Edge: ©(1)

Remove Edge: ©(1) V| =n i

Check if Edge Exists: ©(1) |E| =m '

Get Neighbors (incoming): ©(n)
Get Neighbors (outgoing): ©(n)

18

Aside

* Almost always, adjacency lists are the better choice

* Most graphs are missing most of their edges, so the adjacency list is
much more space efficient and the slower operations aren’t that bad

Definition: Path

A sequence of nodes (vq, Uy, ..., Uk)
st.Vi<i<k-1,(v;,vi) EE

("‘\)

1

Simple Path: Cycle:
A path in which each node A path which starts and

appears at most once ends in the same place

20

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,

21

Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,

Connected Not (strongly) Connected

22

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes
v, V, € V there is a path from v; to v,
ignoring direction of edges

Weakly Connected

Weakly Connected

23

Definition: Complete Graph

A Graph G = (V, E) s.t. for any pair of nodes
V4, V, € IV there is an edge from v to v,

Complete Complete Complete Directed
Undirected Graph Directed Graph Non-simple Graph

24

Graph Density, Data Structures, Efficiency

 The maximum number of edges in a graph is O(|V|%):
Vi(lV|—1)

* Undirected and simple:
* Directed and simple: |V|(|V| —1)
* Direct and non-simple (but no duplicates): |V|?

* |f the graph is connected, the minimum number of edges is |[V| — 1
o If |[E| € ©(]V|?) we say the graph is dense
 If |E| € O(]V|) we say the graph is sparse

* Because |E| is not always near to |V |? we do not typically substitute
|V |2 for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V,E) is a treeif it is undirect,
connected, and has no cycles (i.e. is acyclic).
Often one node is identified as the “root”

A Rooted Tree

26

Breadth-First Search

* Input: anode s

* Behavior: Start with node s, visit all neighbors of s, then all neighbors
of neighbors of s, ...

* Output:

 How long is the shortest path?
* |s the graph connected? Q @

void bfs(graph, s){
BFS found = new Queue();

o ® found.enq{tje.u.e(s)’i
0 mark s as “visited”;

@) a3 While (!found.isEmpty()){
(9) current = found.dequeue();

O for (v : neighbors(current)){
® @), if (! v marked “visited” {
mark v as “visited”;
found.enqueue(v);

Running time: O(|V| + |E|) }

28

Shortest Path (unweighted)

ldea: when it’s seen, remember
its “layer” depth!

int shortestPath(graph, s, t){

found = new Queue();
layer = 0;
found.enqueue(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.dequeue();
layer = depth of current;
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
depth of v = layer + 1;
found.enqueue(v);

}

}
return depth of t;

29

Depth-First Search

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Output:
e Does the graph have a cycle? 1 5
« A topological sort of the graph.) ONE
o/
4
€

DFS (non-recursive)

O)
©
o @ o

3 & -

Running time: O(|V| + |E|)

void dfs(graph, s){

found = new Stack();
found.pop(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.pop();
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
found.push(v);

32

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
} | °

mark curr as “done”;

Using DFS
* Consider the “visited times” and “done times”

* Edges can be categorized: Visited : 1 Visited : 2

* Tree Edge pone: 8 DONE: 7 \isited : 3
* (a, b) was followed when pushing Visited: 0 Done: 6
* (a,b) when b was unvisited when we were at a Done: 15
* Back Edge
* (a,b) goes to an “ancestor”
* a and b visited but not done when we saw (a, b)
* tyisitea(h) < tyisitea(@) < taone(@) < tgone(b) Visited : 9
* Forward Edge Done: 14
* (a,b) goes to a “descendent”
* b was visited and done between when a was visited and done Done: 12 Done: 5

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

Visited : 4

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) 4

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighbors(current)){
@ @ if (v marked “visited” && ! v marked “done”){

cycleFound=true;
}
o e if (! v marked “visited” && IcycleFound){
(3] cycleFound = hasCycle(graph, v);
O @ }
}
mark curr as “done”;
return cycleFound;

} 35

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

0000 -G 0G0

Topological Sort

ldea: List in descending
order by “done” time

List topologicalSort(graph){
donelList = new List();
for (v : graph.vertices()){
if (! v marked as “seen”){
topSortRec(graph, v, donelist);

}
}

donelist.reverse();
return donelist;
}
void topSortRec(graph, curr, doneList){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
topSortRec(graph, v);
}
}

mark curr as “done”;
donelist.add(curr);

} 37

	Slide 1: CSE 332 Autumn 2023 Lecture 18: Graphs
	Slide 2: RadixSort
	Slide 3: RadixSort
	Slide 4: RadixSort
	Slide 5: RadixSort
	Slide 6: RadixSort Running Time
	Slide 7: ARPANET
	Slide 8: Undirected Graphs
	Slide 9: Directed Graphs
	Slide 10: Self-Edges and Duplicate Edges
	Slide 11: Weighted Graphs
	Slide 12: Graph Applications
	Slide 13: Some Graph Terms
	Slide 14: Graph Operations
	Slide 15: Adjacency List
	Slide 16: Adjacency List (Weighted)
	Slide 17: Adjacency Matrix
	Slide 18: Adjacency Matrix (weighted)
	Slide 19: Aside
	Slide 20: Definition: Path
	Slide 21: Definition: (Strongly) Connected Graph
	Slide 22: Definition: (Strongly) Connected Graph
	Slide 23: Definition: Weakly Connected Graph
	Slide 24: Definition: Complete Graph
	Slide 25: Graph Density, Data Structures, Efficiency
	Slide 26: Definition: Tree
	Slide 27: Breadth-First Search
	Slide 28: BFS
	Slide 29: Shortest Path (unweighted)
	Slide 30: Depth-First Search
	Slide 31: Depth-First Search
	Slide 32: DFS (non-recursive)
	Slide 33: DFS Recursively (more common)
	Slide 34: Using DFS
	Slide 35: Cycle Detection
	Slide 36: Topological Sort
	Slide 37: Topological Sort

