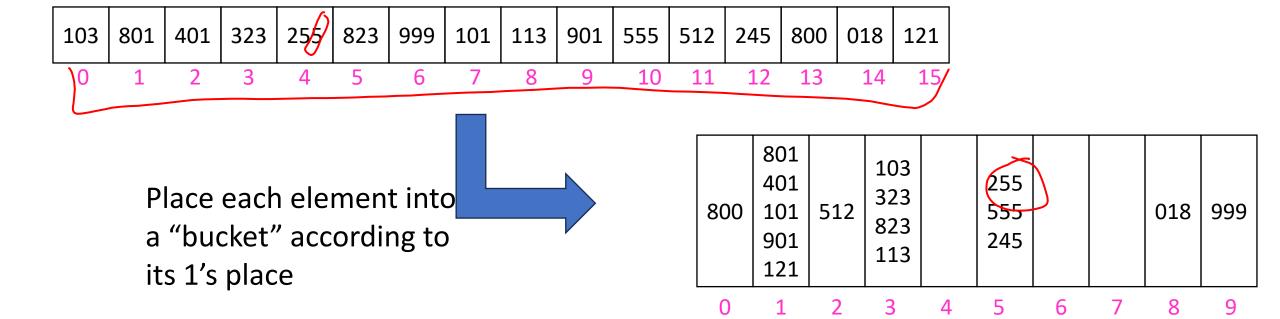
CSE 332 Autumn 2023 Lecture 18: Graphs

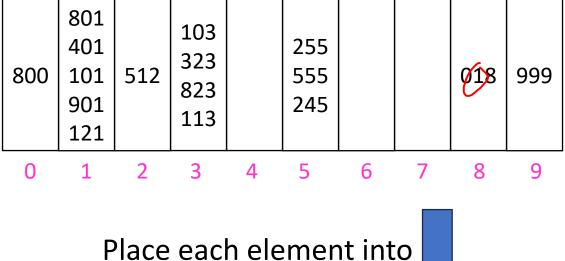
Nathan Brunelle

http://www.cs.uw.edu/332

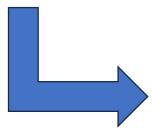
- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

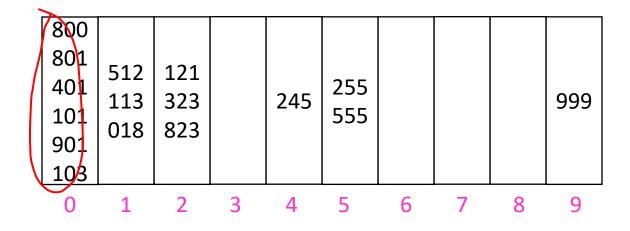


- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant



Place each element into a "bucket" according to its 10's place





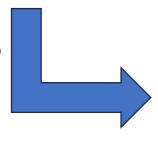
0 - 4

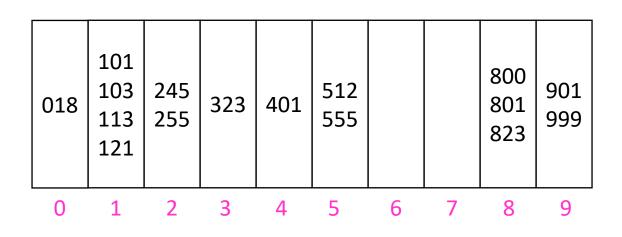
Baltet: 0(ax,) Hd) (M+6)

- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

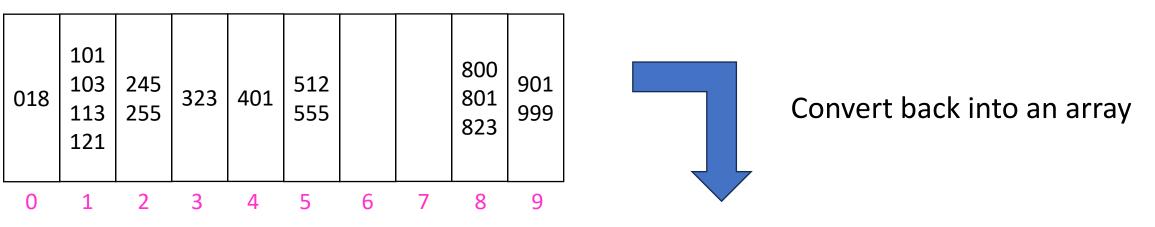
800 801 401 101 901 103	512 113 018	121 323 823		245	255 555				999	
0	1	2	3	4	5	6	7	8	9	

Place each element into a "bucket" according to its 100's place





- Radix: The base of a number system
 - We'll use base 10, most implementations will use larger bases
- Idea:
 - BucketSort by each digit, one at a time, from least significant to most significant

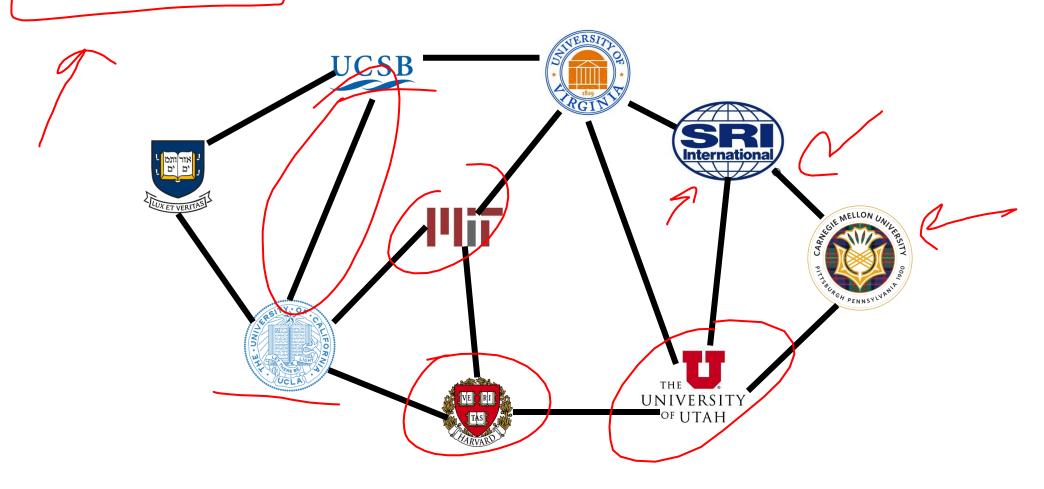


018	811	103	113	121	245	255	323	401	512	555	800	801	823	901	999	
0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	•

RadixSort Running Time

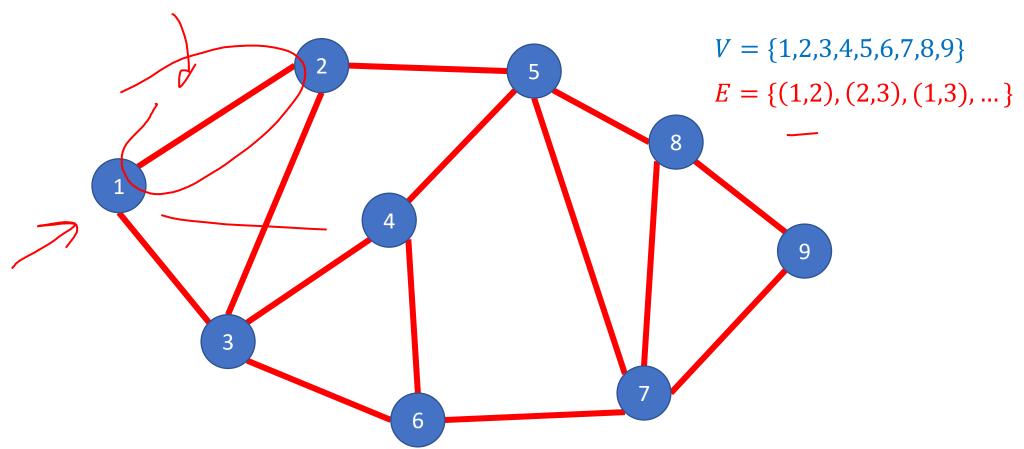
- Suppose largest value is m
- Choose a radix (base of representation) b
- BucketSort all n things using b buckets
 - $\Theta(n+b)$
- Repeat once per each digit
 - $\log_b m$ iterations
- Overall:
 - $\Theta(n\log_b m + b\log_b m)$
- In practice, you can select the value of b to optimize running time
- When is this better than mergesort?

ARPANET

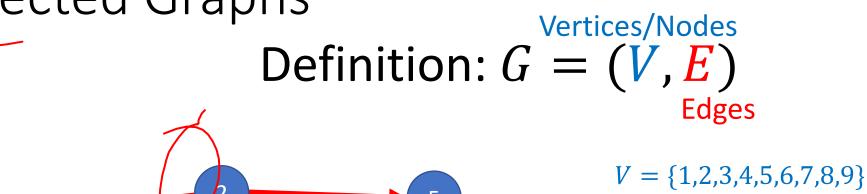


Undirected Graphs

Definition: G = (V, E)Edges



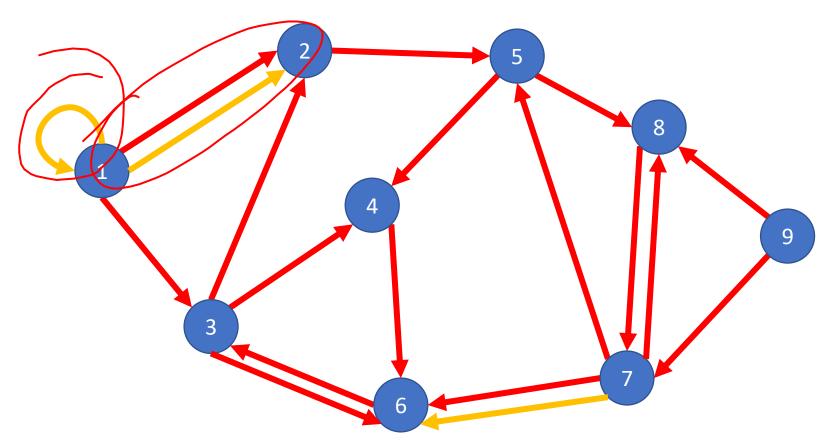
Directed Graphs



 $E = \{(1,2), (2,3), (1,3), \dots\}$

Self-Edges and Duplicate Edges

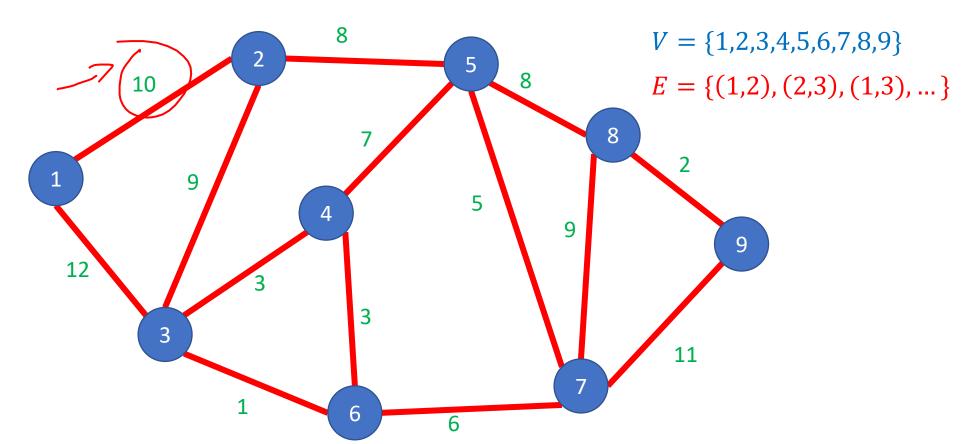
Some graphs may have duplicate edges (e.g. here we have the edge (1,2) twice). Some may also have self-edges (e.g. here there is an edge from 1 to 1). Graph with Neither self-edges nor duplicate edges are called simple graphs



Weighted Graphs

Definition: G = (V, E)Edges

w(e) = weight of edge e

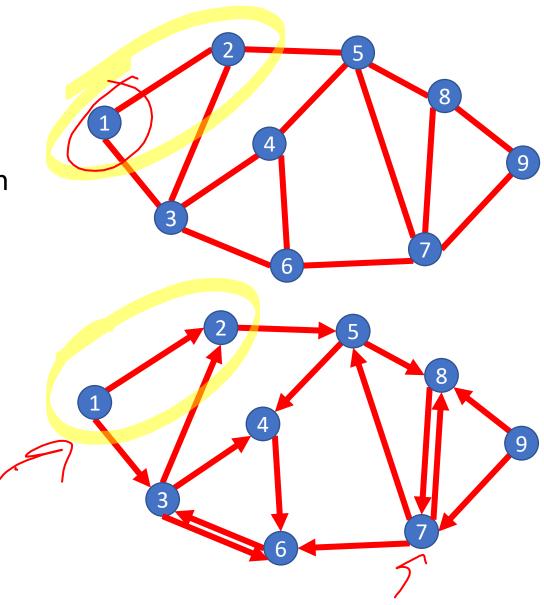


Graph Applications

- For each application below, consider:
 - What are the nodes, what are the edges?
 - Is the graph directed?
 - Is the graph simple?
 - Is the graph weighted?
- Facebook friends
 - Nodes: people, edges: friends relation
 - Directed? No
 - Yes simple
 - depends
- Twitter followers
 - Nodes: people, edges: follows relation
 - Directed? yes
- Java inheritance
- Airline Routes

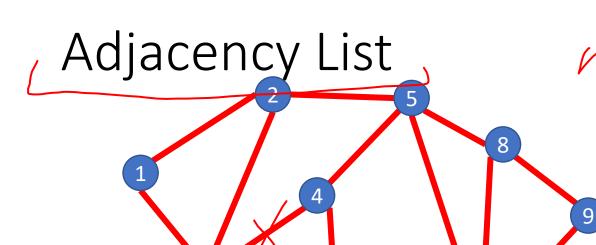
Some Graph Terms

- Adjacent/Neighbors
 - Nodes are adjacent/neighbors if they share an edge
- · Degree MM direct
 - Number of "neighbors" of a vertex
- Indegree
 - Number of incoming neighbors
- Outdegree
 - Number of outgoing neighbors



Graph Operations

- To represent a Graph (i.e. build a data structure) we need:
 - Add Edge
 - Remove Edge
 - Check if Edge Exists
 - Get Neighbors (incoming)
 - Get Neighbors (outgoing)



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

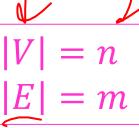
Add Edge $\Theta(1)$

Remove Edge: Θ(X) & Cy

Check if Edge Exists: $\Theta(n)$

Get Neighbors (incoming): $\Theta(n+m)$

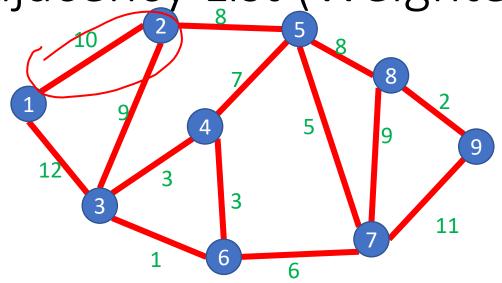
Get Neighbors (outgoing): $\Theta(\deg(v))$



		5
		6
y = n		7
$ \vec{z} = m$		8
7		9

	\gg_{ν}	~ (2 /	9	4 or 5	
1	2	3				
2	1	3	5	4		
3	1	_2	4	6		
4	3	5	6	2	_	
5	2	4	7	8		
6	3	4	7			
7	5	6	8	9		
8	5	7	9			
9	7	8		•		

Adjacency List (Weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

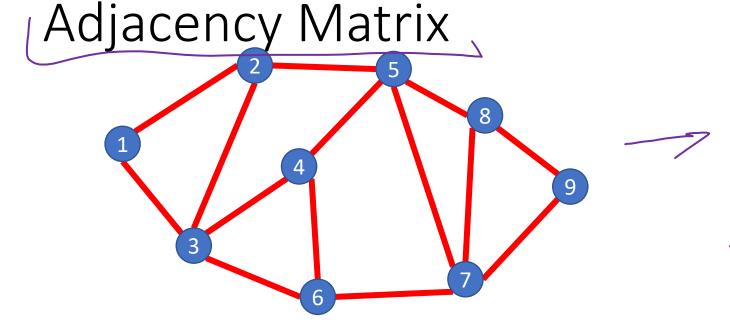
Check if Edge Exists: $\Theta(n)$

Get Neighbors (incoming): $\Theta(?)$

Get Neighbors (outgoing): $\Theta(?)$

V	=	n
E	=	m

1	2,1	U 3		
2	1	3	5	
3	1	2	4	6
4	3	5	6	
5	2	4	7	8
6	3	4	7	
7	5	6	8	9
8	5	7	9	
9	7	8		•



Time/Space Tradeoffs

Space to represent: $\Theta(?)$

Add Edge: $\Theta(?)$

Remove Edge: $\Theta(?)$

Check if Edge Exists: $\Theta(?)$

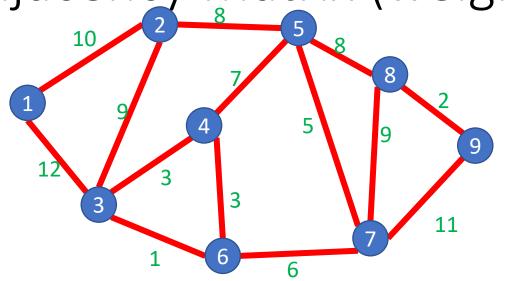
Get Neighbors (incoming): $\Theta(?)$

Get Neighbors (outgoing): $\Theta(?)$

V	=	n
E	_	m

		7	. 3	4					
	А	В	С	D	Е	F	G	Н	1
A		1	1	\bigcirc					
8	- 1		1		1				
3	1	1		1		1			
D/			1		1	1			
E		1		1			1	1	
F			1	1			1		
G					1	1		1	1
Н					1		1		1
1							1	1	

Adjacency Matrix (weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(1)$

Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(n)$

$$|V| = n$$

$$|E|=m$$

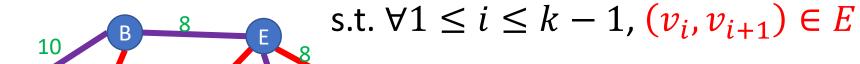
	А	В	С	D	Е	F	G	Н	1
А	/	1	1						
В	1		1		1		4		
C	1	1		1		1			
D			1		1	1			
Е		1		1			1	1	
F			+	- 1			1		
G					1	1		1	1
Н					1		1		1
ı							1	1	

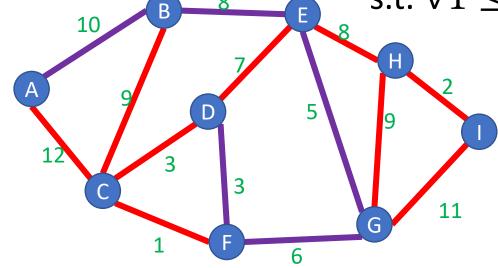
Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations aren't that bad

Definition: Path

A sequence of nodes $(v_1, v_2, ..., v_k)$





Simple Path:

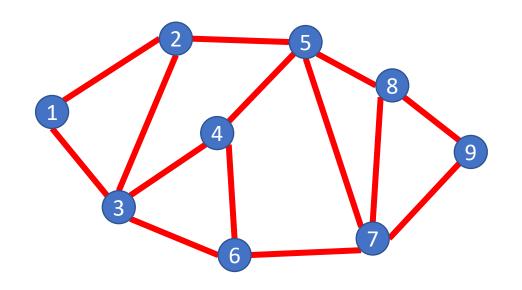
A path in which each node appears at most once

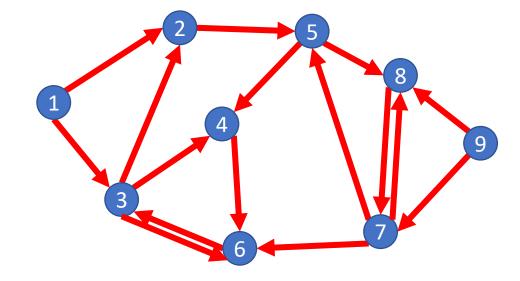
Cycle:

A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

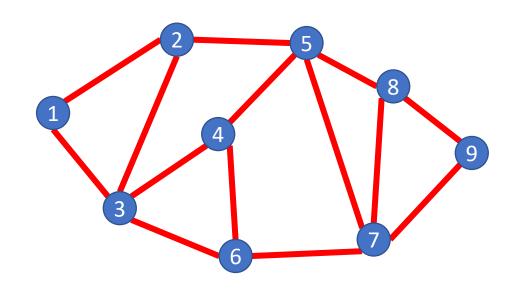
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2



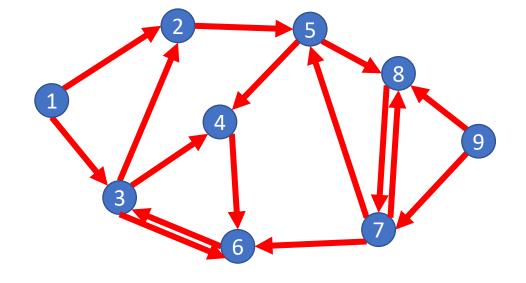


Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2



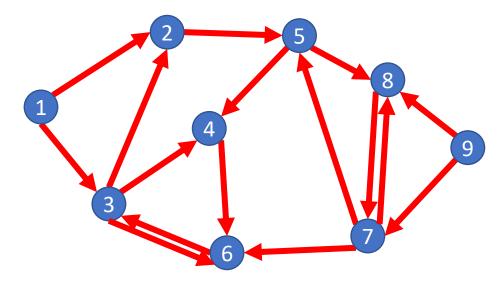
Connected



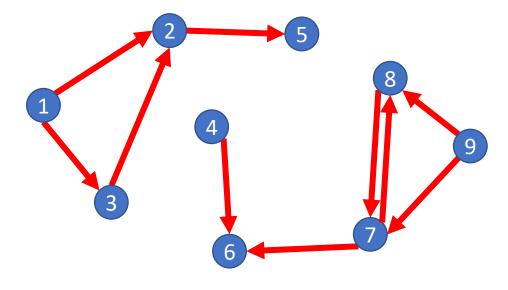
Not (strongly) Connected

Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2 ignoring direction of edges



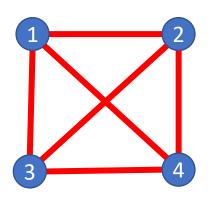
Weakly Connected



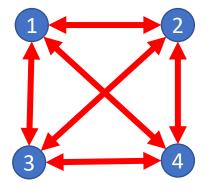
Weakly Connected

Definition: Complete Graph

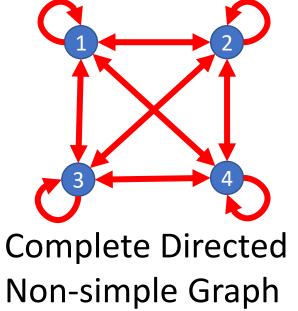
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2



Complete Undirected Graph



Complete Directed Graph

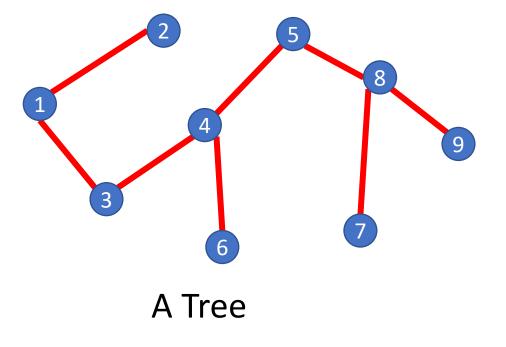


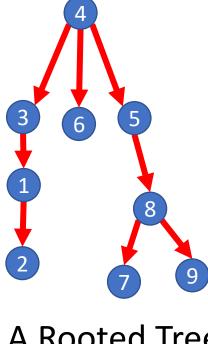
Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: $\frac{|V|(|V|-1)}{2}$
 - Directed and simple: |V|(|V|-1)
 - Direct and non-simple (but no duplicates): $|V|^2$
- If the graph is connected, the minimum number of edges is |V|-1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is **sparse**
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

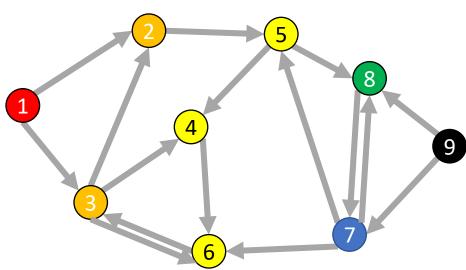




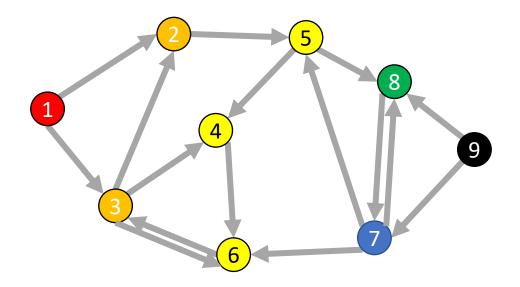
A Rooted Tree

Breadth-First Search

- Input: a node s
- Behavior: Start with node *s*, visit all neighbors of *s*, then all neighbors of neighbors of *s*, ...
- Output:
 - How long is the shortest path?
 - Is the graph connected?



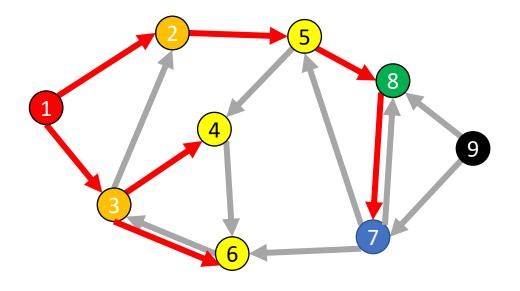
BFS



Running time: $\Theta(|V| + |E|)$

```
void bfs(graph, s){
      found = new Queue();
      found.enqueue(s);
      mark s as "visited";
      While (!found.isEmpty()){
            current = found.dequeue();
            for (v : neighbors(current)){
                   if (! v marked "visited"){
                         mark v as "visited";
                         found.enqueue(v);
```

Shortest Path (unweighted)



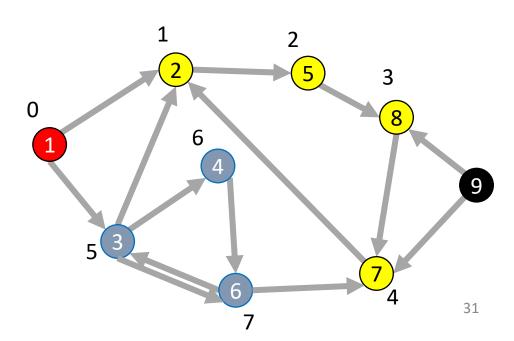
Idea: when it's seen, remember its "layer" depth!

```
int shortestPath(graph, s, t){
       found = new Queue();
       layer = 0;
       found.enqueue(s);
       mark s as "visited";
       While (!found.isEmpty()){
               current = found.dequeue();
               layer = depth of current;
               for (v : neighbors(current)){
                      if (! v marked "visited"){
                              mark v as "visited";
                              depth of v = layer + 1;
                              found.enqueue(v);
       return depth of t;
                                              29
```

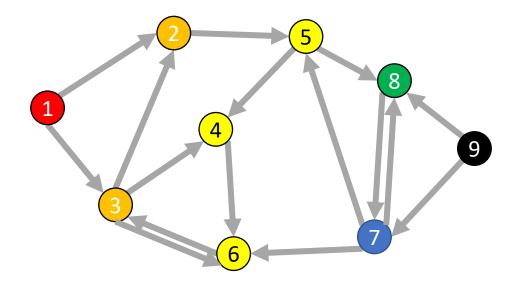
Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s,...
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.



DFS (non-recursive)

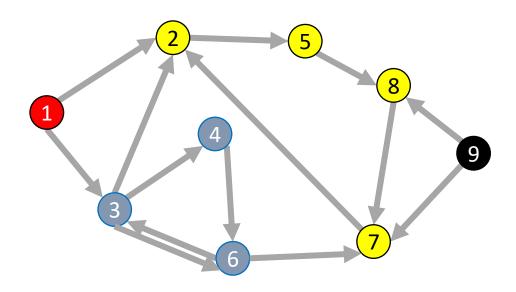


Running time: $\Theta(|V| + |E|)$

```
void dfs(graph, s){
      found = new Stack();
      found.pop(s);
      mark s as "visited";
      While (!found.isEmpty()){
             current = found.pop();
             for (v : neighbors(current)){
                   if (! v marked "visited"){
                          mark v as "visited";
                          found.push(v);
```

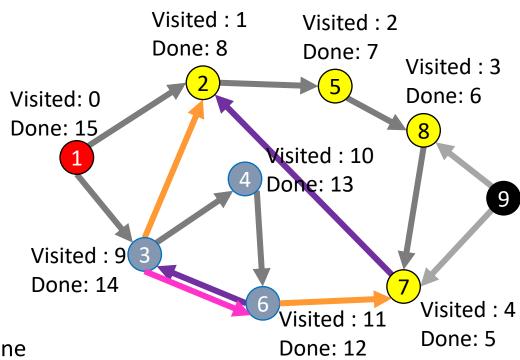
DFS Recursively (more common)

```
void dfs(graph, curr){
      mark curr as "visited";
      for (v : neighbors(current)){
             if (! v marked "visited"){
                    dfs(graph, v);
      mark curr as "done";
```



Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (a, b) was followed when pushing
 - (a, b) when b was unvisited when we were at a
 - Back Edge
 - (a, b) goes to an "ancestor"
 - a and b visited but not done when we saw (a, b)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (a, b) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (a, b) goes to a node that doesn't connect to a
 - b was seen and done before a was ever visited
 - $t_{done}(b) < t_{visited}(a)$



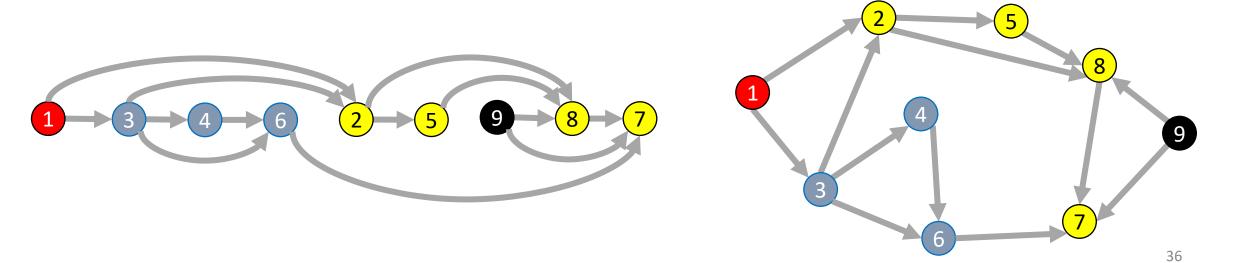
Idea: Look for a back edge!

Cycle Detection

```
boolean hasCycle(graph, curr){
       mark curr as "visited";
       cycleFound = false;
       for (v : neighbors(current)){
              if (v marked "visited" &&! v marked "done"){
                      cycleFound=true;
              if (! v marked "visited" && !cycleFound){
                      cycleFound = hasCycle(graph, v);
       mark curr as "done";
       return cycleFound;
```

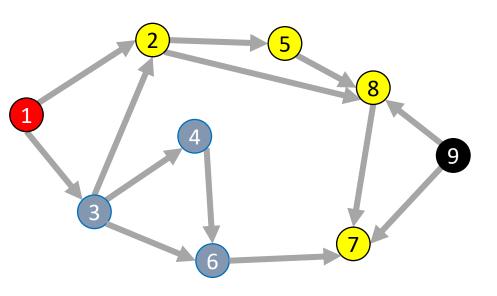
Topological Sort

• A Topological Sort of a **directed acyclic graph** G = (V, E) is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation



Topological Sort

Idea: List in descending order by "done" time



```
List topologicalSort(graph){
        doneList = new List();
        for (v : graph.vertices()){
                if (! v marked as "seen"){
                         topSortRec(graph, v, doneList);
        doneList.reverse();
        return doneList;
void topSortRec(graph, curr, doneList){
        mark curr as "visited";
        for (v : neighbors(current)){
                if (! v marked "visited"){
                         topSortRec(graph, v);
        mark curr as "done";
        doneList.add(curr);
                                                      37
```