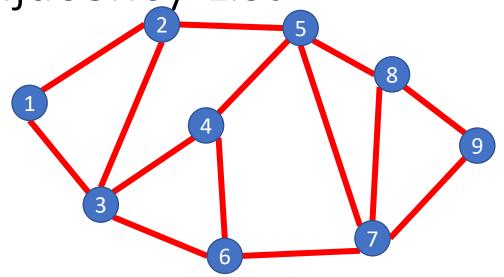
CSE 332 Autumn 2023 Lecture 19: Graphs

Nathan Brunelle

http://www.cs.uw.edu/332



Time/Space Tradeoffs

Space to represent: $\Theta(n+m)$

Add Edge: $\Theta(1)$

Remove Edge (v, w): $\Theta(\deg(v))$

Check if Edge (v, w) Exists: $\Theta(\deg(v))$

Get Neighbors (incoming): $\Theta(n+m)$

Get Neighbors (outgoing): $\Theta(\deg(v))$

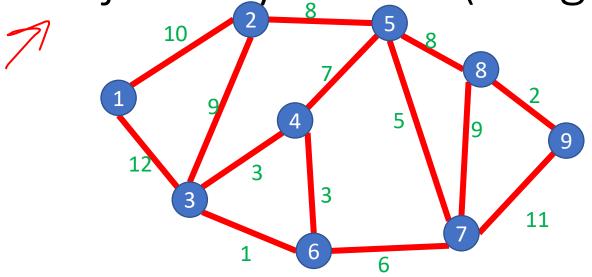
V	=	n

$$|E| = m$$

9

		. /	
2	3		
1	3	5	
1	2	4	6
3	5	6	
2	4	7	8
3	4	7	
5	6	8	9
5	7	9	
			-

Adjacency Matrix (weighted)



Time/Space Tradeoffs

Space to represent: $\Theta(n^2)$

Add Edge: $\Theta(1)$

Remove Edge: $\Theta(1)$

Check if Edge Exists: $\Theta(1)$

Get Neighbors (incoming): $\Theta(n)$

Get Neighbors (outgoing): $\Theta(n)$

V	=	n
E	 =	m

	1	2	3	4	5	6	7	8	9
1		1	1						
2	1		1		1				
3	1	1		1		1			
4			1		1	1			
5		1		1			1	1	
6			1	1			1		
7					1	1		1	1
8					1		1		1
9							1	1	

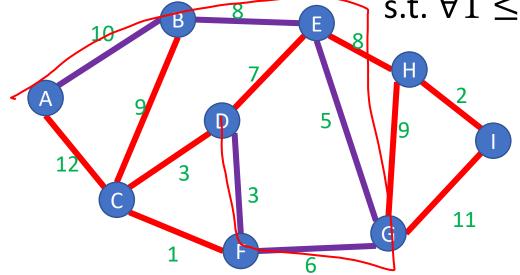
Aside

- Almost always, adjacency lists are the better choice
- Most graphs are missing most of their edges, so the adjacency list is much more space efficient and the slower operations don't end up being that much slower

Definition: Path

A sequence of nodes $(v_1, v_2, ..., v_k)$

s.t.
$$\forall 1 \le i \le k-1$$
, $(v_i, v_{i+1}) \in E$



Simple Path:

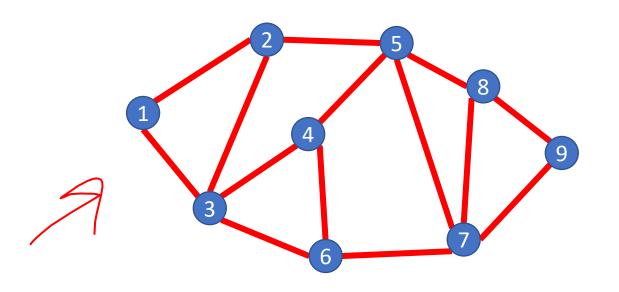
A path in which each node appears at most once

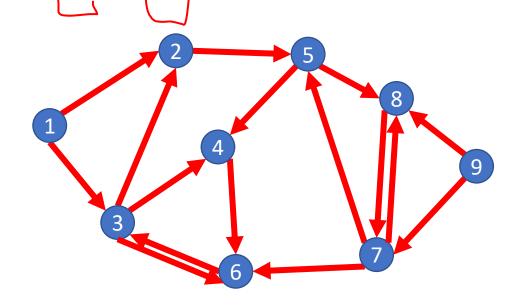
Cycle:

A path which starts and ends in the same place

Definition: (Strongly) Connected Graph

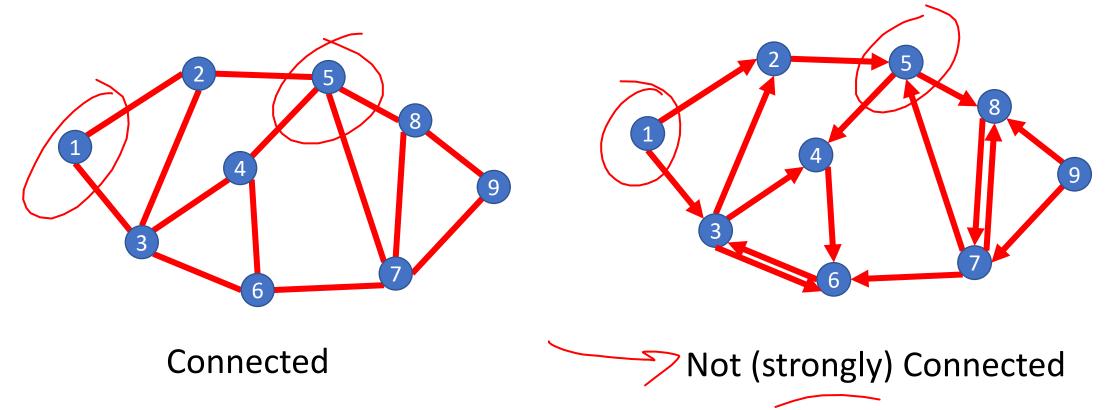
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2





Definition: (Strongly) Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is a path from v_1 to v_2



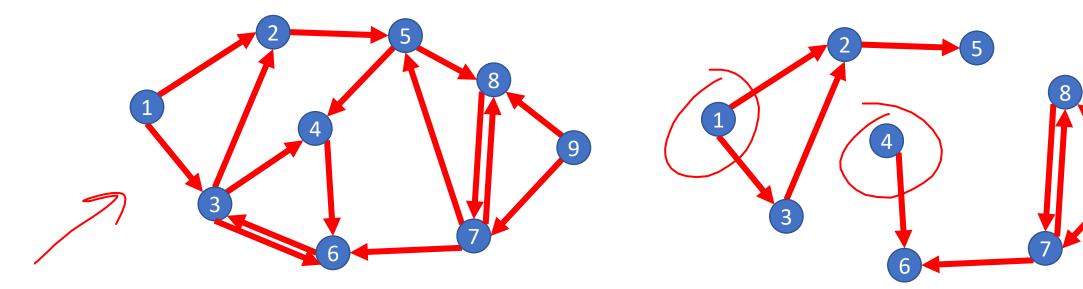
Definition: Weakly Connected Graph

A Graph G = (V, E) s.t. for any pair of nodes

 $v_1, v_2 \in V$ there is a path from v_1 to v_2

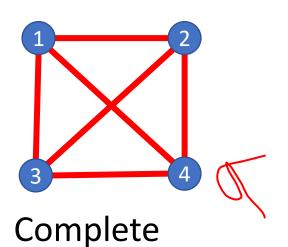
ignoring direction of edges

Weakly Connected

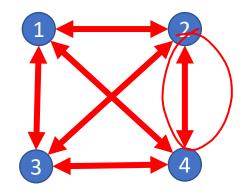


Definition: Complete Graph

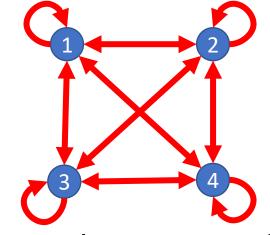
A Graph G = (V, E) s.t. for any pair of nodes $v_1, v_2 \in V$ there is an edge from v_1 to v_2



Undirected Graph







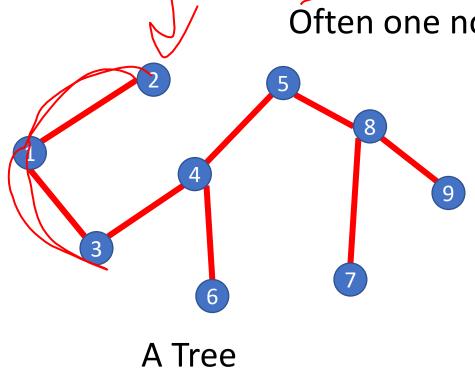
Complete Directed Non-simple Graph

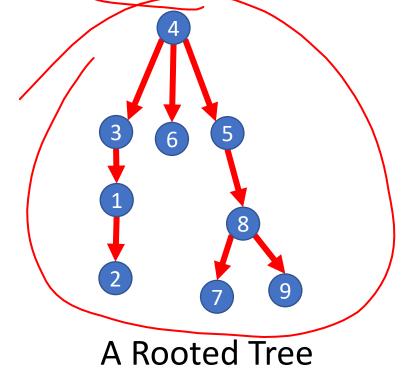
Graph Density, Data Structures, Efficiency

- The maximum number of edges in a graph is $\Theta(|V|^2)$:
 - Undirected and simple: |V|(|V|-1)/2
 Directed and simple: |V|(|V| 1)
 Direct and non-simple (but no duplicates): |V|²
- \bullet If the graph is connected, the minimum number of edges is |V|-1
- If $|E| \in \Theta(|V|^2)$ we say the graph is **dense**
- If $|E| \in \Theta(|V|)$ we say the graph is sparse
- Because |E| is not always near to $|V|^2$ we do not typically substitute $|V|^2$ for |E| in running times, but leave it as a separate variable

Definition: Tree

A Graph G = (V, E) is a tree if it is undirect, $C \ge C$ connected, and has no cycles (i.e. is acyclic). Often one node is identified as the "root"

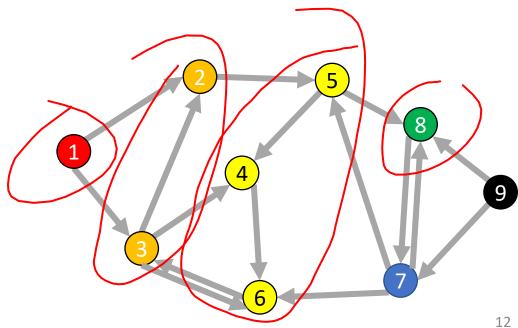


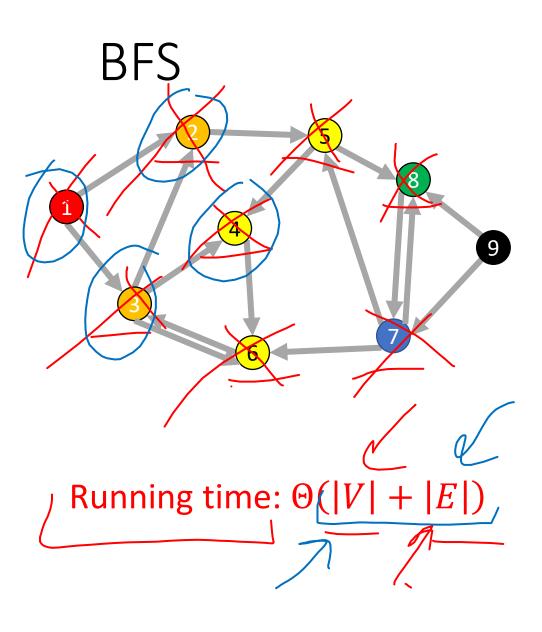


Breadth-First Search

- Input: a node s
- Behavior: Start with node s, visit all neighbors of s, then all neighbors of neighbors of s, ...
- Output:
 - How long is the shortest path?
 - Is the graph connected?

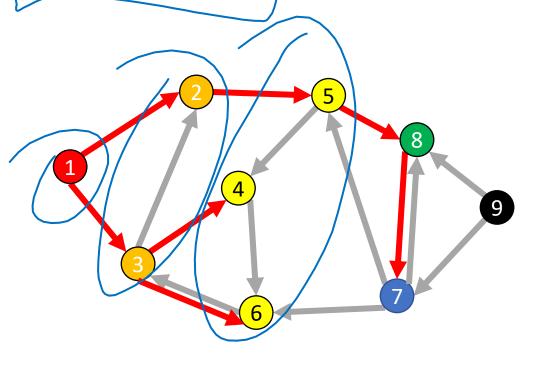
wearty





```
void bfs(graph(s){
   found = new(Queue();
   found.engueue(s);
   mark s as "visited"
   While (!found.isEmpty()){
          current = found.dequeue();
         for (v : neighbors(current)){
                if (! v marked "visited"){
                      mark v as "visited";
                      found.enqueue(v);
```

Shortest Path (unweighted)



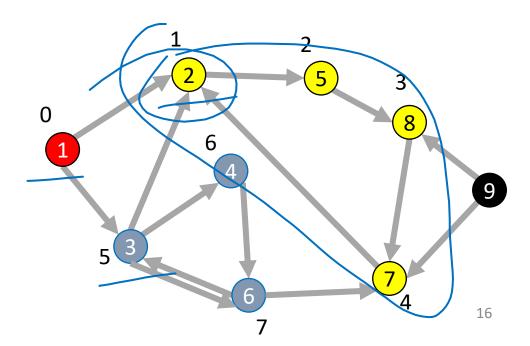
Idea: when it's seen, remember its "layer" depth!

```
int shortestPath(graph, s, t){
    found = new Queue();
    layer = 0;
    found.enqueue(s);
    mark s as "visited";
    While (!found.isEmpty()){
            current = found.dequeue();/
            layer = depth of current;
            for (v : neighbors(current)){
                   if (! v marked "visited"){
                           mark v as "visited";
                           depth of v = layer + 1;
                           found.enqueue(v);
    return depth of t;
                                           14
```

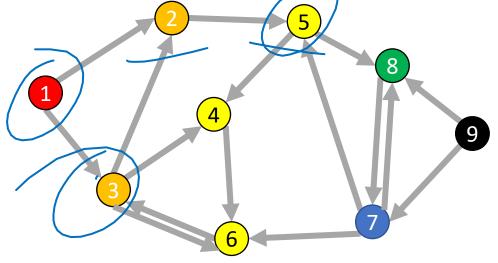
Depth-First Search

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s,...
- Output:
 - Does the graph have a cycle?
 - A topological sort of the graph.



DFS (non-recursive)

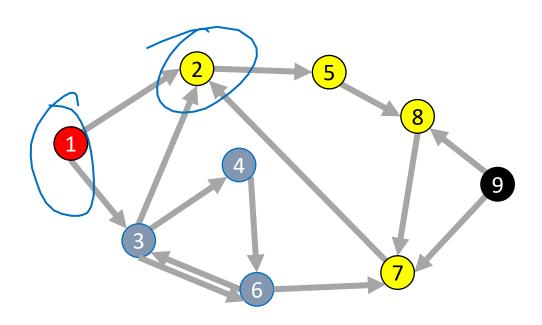


Running time: $\Theta(|V| + |E|)$

```
void dfs(graph, s){
   found = new Stack();
   found.pop(s);
   mark s as "visited";
   While (!found.isEmpty()){
         current = found.pop();
         for (v : neighbors(current)){
                if (! v marked "visited"){
                      mark v as "visited";
                      found.push(v);
```

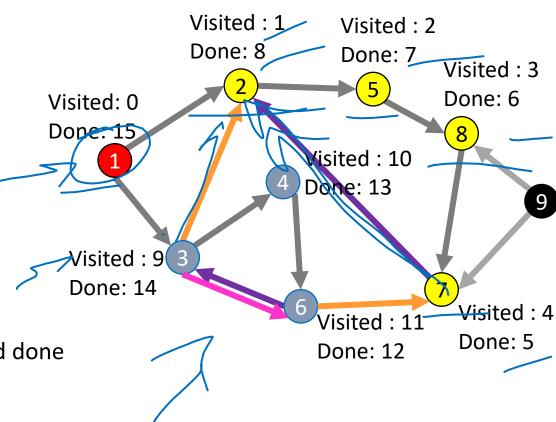
DFS Recursively (more common)

```
void dfs(graph, curr){
   mark curr as "visited";
   for (v : neighbors(current)){
          if (! v marked "visited"){
                 dfs(graph, v);
   mark curr as "done";
```



Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
 - Tree Edge
 - (a, b) was followed when pushing
 - (a,b) when b was unvisited when we were at a
 - Back Edge
 - (a, b) goes to an "ancestor"
 - a and b visited but not done when we saw (a, b)
 - $t_{visited}(b) < t_{visited}(a) < t_{done}(a) < t_{done}(b)$
 - Forward Edge
 - (a, b) goes to a "descendent"
 - b was visited and done between when a was visited and done
 - $t_{visited}(a) < t_{visited}(b) < t_{done}(b) < t_{done}(a)$
 - Cross Edge
 - (a,b) goes to a node that doesn't connect to a
 - b was seen and done before a was ever visited
 - $t_{done}(b) < t_{visited}(a)$

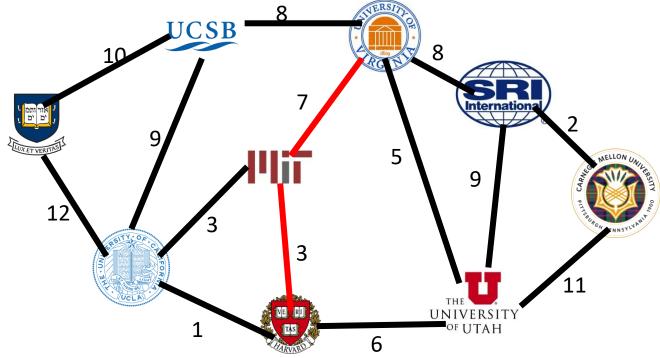


Idea: Look for a back edge!

Cycle Detection

```
boolean hasCycle(graph, curr){
    mark curr as "visited";
    cycleFound = false;
    for (v : neighbors(current)){
           if (v marked "visited" &&! v marked "done"){
                   cycleFound=true;
           if (! v marked "visited" && !cycleFound){
                   cycleFound = hasCycle(graph, v);
    mark curr as "done";
    return cycleFound;
```

Single-Source Shortest Path



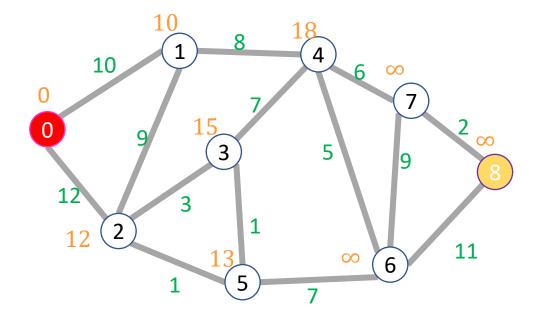
Find the quickest way to get from UVA to each of these other places

Given a graph G = (V, E) and a start node $s \in V$, for each $v \in V$ find the least-weight path from $s \to v$ (call this weight $\delta(s, v)$)

(assumption: all edge weights are positive)

Dijkstra's Algorithm

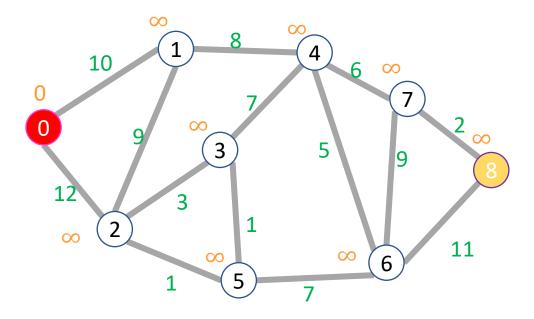
- Input: graph with **no negative edge weights**, start node *s*, end node *t*
- Behavior: Start with node *s*, repeatedly go to the incomplete node "nearest" to *s*, stop when
- Output:
 - Distance from start to end
 - Distance from start to every node



End: 8

Node	Done?
0	F
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

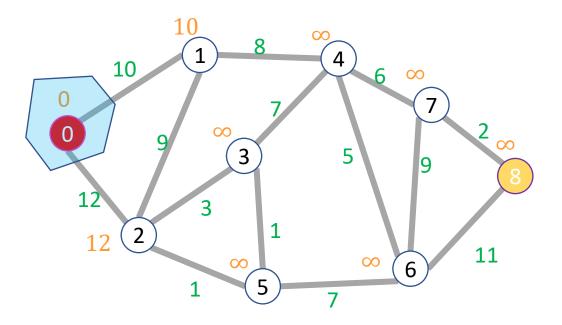
Node	Distance
0	0
1	∞
2	∞
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞



End: 8

Node	Done?
0	Т
1	F
2	F
3	F
4	F
5	F
6	F
7	F
8	F

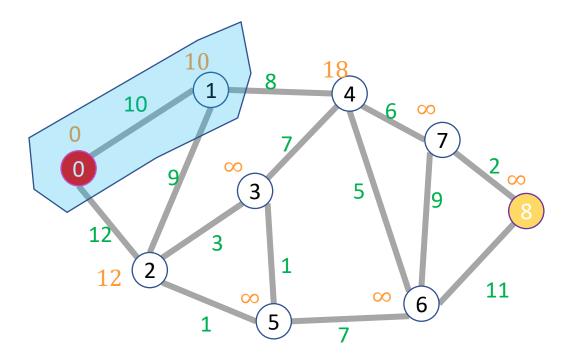
Node	Distance
0	0
1	10
2	12
3	∞
4	∞
5	∞
6	∞
7	∞
8	∞



End: 8

Node	Done?
0	Т
1	Т
2	F
3	F
4	F
5	F
6	F
7	F
8	F

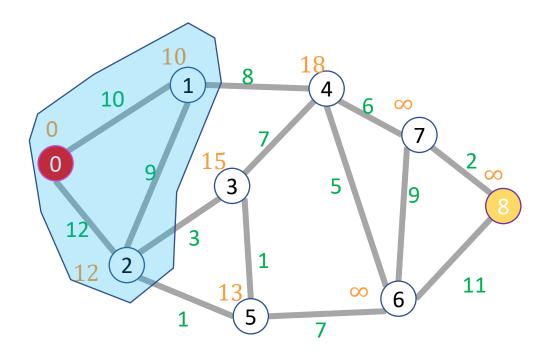
Node	Distance
0	0
1	10
2	12
3	∞
4	18
5	∞
6	∞
7	∞
8	∞



End: 8

Node	Done?
0	Т
1	T
2	T
3	F
4	F
5	F
6	F
7	F
8	F

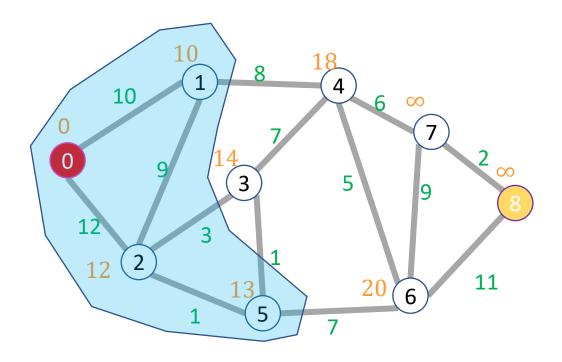
Node	Distance
0	0
1	10
2	12
3	15
4	18
5	13
6	∞
7	∞
8	∞



End: 8

Node	Done?
0	Т
1	Т
2	Т
3	F
4	F
5	Т
6	F
7	F
8	F

Node	Distance
0	0
1	10
2	12
3	14
4	18
5	13
6	∞
7	20
8	∞



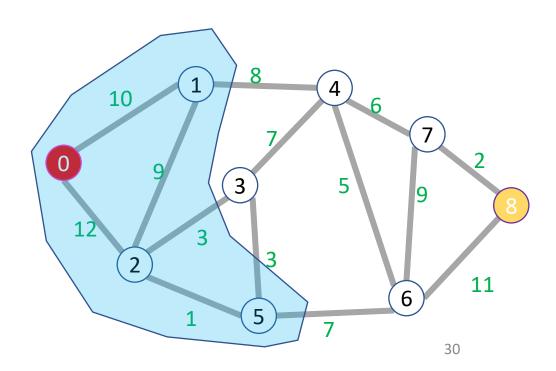
Dijkstra's Algorithm

```
int dijkstras(graph, start, end){
                                                                           10
      distances = [\infty, \infty, \infty, ...]; // one index per node
      done = [False,False,False,...]; // one index per node
      PQ = new minheap();
      PQ.insert(0, start); // priority=0, value=start
      distances[start] = 0;
      while (!PQ.isEmpty){
               current = PQ.extractmin();
               if done[current]{ continue;}
               done[current] = true;
               for (neighbor : current.neighbors){
                        if (!done[neighbor]){
                                  new_dist = distances[current]+weight(current,neighbor);
                                  if new_dist < distances[neighbor]{</pre>
                                           distances[neighbor] = new_dist;
                                           PQ.decreaseKey(new_dist,neighbor); }
      return distances[end]
```

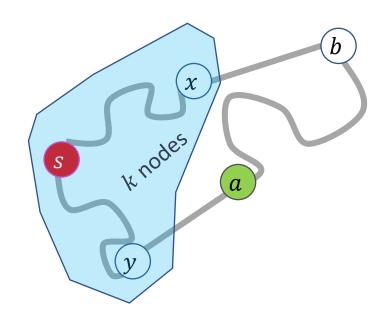
Dijkstra's Algorithm: Running Time

- How many total priority queue operations are necessary?
 - How many times is each node added to the priority queue?
 - How many times might a node's priority be changed?
- What's the running time of each priority queue operation?
- Overall running time:
 - $\Theta(|E|\log|V|)$

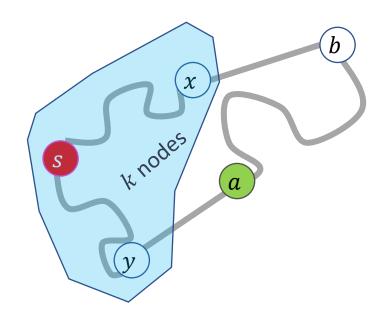
- Claim: when a node is removed from the priority queue, we have found its shortest path
- Induction over number of completed nodes
- Base Case:
- Inductive Step:



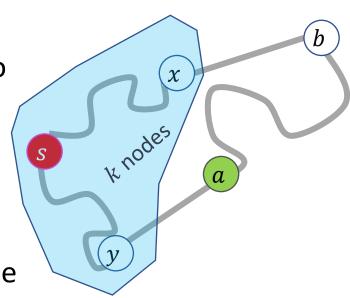
- Claim: when a node is removed from the priority queue, its distance is that of the shortest path
- Induction over number of completed nodes
- Base Case: Only the start node removed
 - It is indeed 0 away from itself
- Inductive Step:
 - If we have correctly found shortest paths for the first k nodes, then when we remove node k+1 we have found its shortest path



• Suppose a is the next node removed from the queue. What do we know bout a?



- Suppose a is the next node removed from the queue.
 - No other incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
 - ullet Consider any other incomplete node b that is 1 edge away from a complete node
 - a is the closest node that is one away from a complete node
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!



- Suppose *a* is the next node removed from the queue.
 - No other node incomplete node has a shorter path discovered so far
- Claim: no undiscovered path to a could be shorter
 - ullet Consider any other incomplete node b that is 1 edge away from a complete node
 - a is the closest node that is one away from a complete node
 - No path from b to a can have negative weight
 - Thus no path that includes b can be a shorter path to a
 - Therefore the shortest path to *a* must use only complete nodes, and therefore we have found it already!

