
CSE 332 Autumn 2023
Lecture 26: Wisdom and

Deadlock
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Back Account Using Synchronize (Final)
class BankAccount {

 private int balance = 0;

 synchronized int getBalance() { return balance; }

 synchronized void setBalance(int x) { balance = x; }

 synchronized void withdraw(int amount) {

 int b = getBalance();

 if (amount > b)

 throw new WithdrawTooLargeException();

 setBalance(b – amount); }

 // other operations like deposit (which would use synchronized)

}

How to fix this?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Make a bigger critical section

How to fix this?

class Stack {

 private E[] array = (E[])new Object[SIZE];

 private int index = -1;

 synchronized boolean isEmpty() { … }

 synchronized void push(E val) { … }

 synchronized E pop() { … }

 synchronized E peek(){

 E ans = pop();

push(ans);

return ans;

 }

}

Make a bigger critical section

Parallel Code Conventional Wisdom

Memory Categories

All memory must fit one of three categories:

1. Thread Local: Each thread has its own copy

2. Shared and Immutable: There is just one copy, but nothing will ever
write to it

3. Shared and Mutable: There is just one copy, it may change
• Requires Synchronization!

Thread Local Memory

• Guideance: Whenever possible, avoid sharing resources

• Dodges all race conditions, since no other threads can touch it!
• No synchronization necessary! (Remember Ahmdal’s law)

• Use whenever threads do not need to communicate using the
resource
• E.g., each thread should have its on Random object

• In most cases, most objects should be in this category

Immutable Objects

• Guidance: Whenever possible, avoid changing objects
• Make new objects instead

• Parallel reads are not data races
• If an object is never written to, no synchronization necessary!

• Many programmers over-use mutation, minimize it

Shared and Mutable Objects

• Guidance: For everything else, use locks

• Avoid all data races
• Every read and write should be projected with a lock, even if it “seems safe”

• Almost every Java/C program with a data race is wrong

• Even without data races, it still may be incorrect
• Watch for bad interleavings as well!

• Use locks whenever there is an incomplete intermediate state!

Consistent Locking

• For each location needing synchronization, have a lock that is always
held when reading or writing the location

• The same lock can (and often should) “guard” multiple fields/objects
• Clearly document what each lock guards!

• In Java, the lock should usually be the object itself (i.e. “this”)

• Guidance: Have a mapping between memory locations and lock
objects and stick to it!

Lock Granularity

• Coarse Grained: Fewer locks guarding more things each
• One lock for an entire data structure

• One lock shared by multiple objects (e.g. one lock for all bank accounts)

• Fine Grained: More locks guarding fewer things each
• One lock per data structure location (e.g. array index)

• One lock per object or per field in one object (e.g. one lock for each account)

• Note: there’s really a continuum between them…

Example: Separate Chaining Hashtable

• Coarse-grained: One lock for the entire hashtable

• Fine-grained: One lock for each bucket

• Which supports more parallelism in insert and find?

• Which makes rehashing easier?

• What happens if you want to have a size field?

Tradeoffs

• Coarse-Grained Locking:
• Simpler to implement and avoid race conditions

• Faster/easier to implement operations that access multiple locations (because all
guarded by the same lock)

• Much easier for operations that modify data-structure shape

• Fine-Grained Locking:
• More simultaneous access (performance when coarse grained would lead to

unnecessary blocking)

• Can make multi-location operations more difficult: say, rotations in an AVL tree

• Guidance: Start with coarse-grained, make finer only as necessary to
improve performance

Similar But Separate Issue: Critical Section
Granularity
• Coarse-grained

• For every method that needs a lock, put the entire method body in a lock

• Fine-grained
• Keep the lock only for the sections of code where it’s necessary

• Guidance:
• Try to structure code so that expensive operations (like I/O) can be done

outside of your critical section

• E.g., if you’re trying to print all the values in a tree, maybe copy items into an
array inside your critical section, then print the array’s contents outside.

Atomicity

• Atomic: indivisible

• Atomic operation: one that should be thought of as a single step

• Some sequences of operations should behave as if they are one unit
• Between two operations you may need to avoid exposing an intermediate

state

• Usually ADT operations should be atomic
• You don’t want another thread trying to do an insert while another thread is rotating the

AVL tree

• Guidance: Think first in terms of what operations need to be atomic
• Design critical sections and locking granularity based on these decisions

Use Pre-Tested Code

• Guidance: Whenever possible, use built-in libraries!

• Other people have already invested tons of effort into making things
both efficient and correct, use their work when you can!
• Especially true for concurrent data structures

• Use thread-safe data structures when available
• E.g. Java as ConcurrentHashMap

Deadlock

• Occurs when two or more threads are mutually blocking each other

• T1 is blocked by T2, which is blocked by T3, …, Tn is blocked by T1
• A cycle of blocking

Bank Account

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 synchronized void transferTo(int amt, BankAccount a) {

 this.withdraw(amt);

 a.deposit(amt);

 }

}

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost
release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized

acquire lock for account y b/c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized

acquire lock for account x b/c deposit is synchronized

release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

• Deadlocks occur when there are multiple locks necessary to complete a
task and different threads may obtain them in a different order

• Option 1:
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2:
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked

separately

• Option 3:
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit,

make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(BANK){

 this.withdraw(amt);

 a.deposit(amt);

 }

 }

}

Option 2: Finer Critical Section

class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 synchronized(this){

 this.withdraw(amt);

 }

 synchronized(a){

 a.deposit(amt);

 }

 }

}

Option 3: First Get All Locks In A Fixed Order
class BankAccount {

 …

 synchronized void withdraw(int amt) {…}

 synchronized void deposit(int amt) {…}

 void transferTo(int amt, BankAccount a) {

 if (this.acctNum < a.acctNum){

 synchronized(this){

 synchronized(a){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 else {

 synchronized(a){

 synchronized(this){

 this.withdraw(amt);

 a.deposit(amt);

 } } }

 }

}

Depth-First Search

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

26

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

27

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

DFS Recursively (more common)

28

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Using DFS
• Consider the “visited times” and “done times”

• Edges can be categorized:
• Tree Edge

• (𝑎, 𝑏) was followed when pushing
• (𝑎, 𝑏) when 𝑏 was unvisited when we were at 𝑎

• Back Edge
• (𝑎, 𝑏) goes to an “ancestor”
• 𝑎 and 𝑏 visited but not done when we saw (𝑎, 𝑏)

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑑𝑜𝑛𝑒 𝑎 < 𝑡𝑑𝑜𝑛𝑒(𝑏)

• Forward Edge
• (𝑎, 𝑏) goes to a “descendent”
• 𝑏 was visited and done between when 𝑎 was visited and done

• 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑑𝑜𝑛𝑒 𝑎

• Cross Edge
• (𝑎, 𝑏) goes to a node that doesn’t connect to 𝑎
• 𝑏 was seen and done before 𝑎 was ever visited
• 𝑡𝑑𝑜𝑛𝑒 𝑏 < 𝑡𝑣𝑖𝑠𝑖𝑡𝑒𝑑 𝑎 29

Visited: 0
Done: 15

Visited : 1
Done: 8

Visited : 2
Done: 7

Visited : 3
Done: 6

Visited : 4
Done: 5

1

2

3

4

5

6
7

9

8

Visited : 9
Done: 14

Visited : 10
Done: 13

Visited : 11
Done: 12

Cycle Detection

30

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

31

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8

DFS Recursively

32

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

DFS: Topological sort

33

def dfs(graph, s):
 seen = [False, False, False, …] # length matches |𝑉|
 done = [False, False, False, …] # length matches |𝑉|
 dfs_rec(graph, s, seen, done)

def dfs_rec(graph, curr, seen, done):
 mark curr as seen
 for v in neighbors(current):
 if v not seen:
 dfs_rec(graph, v, seen, done)
 mark curr as done

Idea: List in reverse
order by finish time

1

2

3

4

5

6
7

9

8

DFS Recursively

34

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Idea: List in reverse
order by finish time

DFS: Topological sort

35

List topSort(graph){
 List<Nodes> finished = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 finished.reverse();
 return finished;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 finished.add(curr)
}

Idea: List in reverse
order by finish time

1

2

3

4

5

6
7

9

8

finished:

	Slide 1: CSE 332 Autumn 2023 Lecture 26: Wisdom and Deadlock
	Slide 2: Back Account Using Synchronize (Final)
	Slide 3: How to fix this?
	Slide 4: How to fix this?
	Slide 5: Parallel Code Conventional Wisdom
	Slide 6: Memory Categories
	Slide 7: Thread Local Memory
	Slide 8: Immutable Objects
	Slide 9: Shared and Mutable Objects
	Slide 10: Consistent Locking
	Slide 11: Lock Granularity
	Slide 12: Example: Separate Chaining Hashtable
	Slide 13: Tradeoffs
	Slide 14: Similar But Separate Issue: Critical Section Granularity
	Slide 15: Atomicity
	Slide 16: Use Pre-Tested Code
	Slide 17: Deadlock
	Slide 18: Bank Account
	Slide 19: The Deadlock
	Slide 20: The Deadlock
	Slide 21: Resolving Deadlocks
	Slide 22: Option 1: Coarser Locking
	Slide 23: Option 2: Finer Critical Section
	Slide 24: Option 3: First Get All Locks In A Fixed Order
	Slide 25: Depth-First Search
	Slide 26: Depth-First Search
	Slide 27: DFS (non-recursive)
	Slide 28: DFS Recursively (more common)
	Slide 29: Using DFS
	Slide 30: Cycle Detection
	Slide 31: Topological Sort
	Slide 32: DFS Recursively
	Slide 33: DFS: Topological sort
	Slide 34: DFS Recursively
	Slide 35: DFS: Topological sort

