CSE 332 Autumn 2023
Lecture 26: Topological Sort and
Minimum Spanning Trees

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Output:
e Does the graph have a cycle? 1 5
« A topological sort of the graph.) ONE
o/
4
€

DFS (non-recursive) voiddfsigraph, s)

found = new Stack();

o ® found.pop(s);\
o mark s as “visited”;
@) a3 While (!found.isEmpty()){
O current = found.pop();
® for (v : neighbors(current)){
® @) if (! v marked “visited”){
mark v as “visited”;
found.push(v);
Running time: O(|V| + |E|) } }
}

DFS Recursively (more common)

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
} | °

mark curr as “done”;

Using DFS
* Consider the “visited times” and “done times”

* Edges can be categorized: Visited : 1 Visited : 2

* Tree Edge pone: 8 DONE: 7 \isited : 3
* (a, b) was followed when pushing Visited: 0 Done: 6
* (a,b) when b was unvisited when we were at a Done: 15
* Back Edge
* (a,b) goes to an “ancestor”
* a and b visited but not done when we saw (a, b)
* tyisitea(h) < tyisitea(@) < taone(@) < tgone(b) Visited : 9
* Forward Edge Done: 14
* (a,b) goes to a “descendent”
* b was visited and done between when a was visited and done Done: 12 Done: 5

¢ tvisited (a) < tvisited (b) < tdone (b) < tdone (a)

Visited : 4

(a, b) goes to a node that doesn’t connect to a
b was seen and done before a was ever visited

¢ tdone(b) < lyisited (a) >

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighbors(current)){
@ @ if (v marked “visited” && ! v marked “done”){

cycleFound=true;
}
o e if (! v marked “visited” && IcycleFound){
(3] cycleFound = hasCycle(graph, v);
O @ }
}
mark curr as “done”;
return cycleFound;

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

0000 -G 0G0

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

ldea: List in reverse
order by “done” time

DFS: Topological sort

List topSort(graph){
List<Nodes> done = new List<>();
for (Node v : graph.vertices){
if (v.visited){
finishTime(graph, v, finished);
}
}

done.reverse();
return done;

}

void finishTime(graph, curr, finished){
curr.visited = true;
for (Node v : curr.neighbors){
if (Iv.visited){
finishTime(graph, v, finished);
}
}

done.add(curr)

finished:

ldea: List in reverse
order by “done” time

Definition: Tree

A connected graph with no cycles

Note: A tree does not need
a root, but they often do!

11

Definition: Tree

A connected graph with no cycles

Pick some arbitrary
root node and
rearrange tree

12

Definition: Spanning Tree

A Tree T = (V, Et) which connects (“spans”)
all the nodesina graph ¢ = (V,E)

3 How many edges does T have?
B Q..

, 0 V-1 8 _@ s

> 9
12 . 0 " (A (G) O
e 3 Pick some arbitrary

6
11 root node and 1 G
1 G - @ rearrange tree G 3 Q

Any set of V-1 edges in the graph that Any set of V-1 edges that connects all

doesn’t have any cycles is guaranteed the nodes in the graph is guaranteed to
to be a spanning tree! be a spanning tree! 13

Definition: Minimum Spanning Tree

A Tree T = (V, E7) which connects (“spans”)
all the nodes in a graph ¢ = (V, E), that has
minimal cost

0 0.,
7 H Cost(T) = Z w(e)

eeEr

14

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

15

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

16

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

17

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

18

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

19

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

20

Definition: Cut

A Cut of graph G = (V/, E) is a partition of the
nodes into two sets, Sand V' — S

Edge (v,,v,) € E crosses a A set of edges R Respects a cut
cutifvpeSandv, eV —-3S if no edges cross the cut
(or opposite), e.g. (4, C) eg. R={(4,B),(E,G),(F,G)}

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (S,V —S5). AU is also a subset of a minimum spanning

tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S, V —
S) be any cut which A respects. Let e be the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.

10 O——0_,
7 @
0 9 Q 5)
S O
12 3
G i e 11
' G 6 23

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S,V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

24

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

25

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

26

Proof of Kruskal’s Algorithm

Start with an empty tree A
Repeat V' — 1 times:

Add the min-weight edge that doesn’t
cause a cycle

. OO,

Proof: Suppose we have some arbitrary set of
edges A that Kruskal’s has already selected to
include in the MST. e = (F, () is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
F to G using only edges in A because e does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:

* nodes reachable from G using edges in A
 nodes reachable from F using edges in A

e is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

27

Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat V — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Keep edges in a Disjoint-set
data structure (very fancy)
O(E logV)

28

General MST Algorithm

Start with an empty tree A
Repeat V — 1 times:
Pick a cut (5,V — §) which A respects
Add the min-weight edge which crosses (S,V —)

29

Prim’s Algorithm

Start with an empty tree
Repeat V — 1 times:
Pick a cut (S5,V — §) which 4 respects
Add the min-weight edge which crosses (5,V —)

S is all endpoint of edges in
e is the min-weight edge that grows the

10 A0,

30

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

10 —0.

31

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

32

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

33

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

\[
e

34

Prim’s Algorithm
Start with an empty tree A ¢ .
eep edges in a Heap

Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

35

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17 ;

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

38

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17
3

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

39

	Slide 1: CSE 332 Autumn 2023 Lecture 26: Topological Sort and Minimum Spanning Trees
	Slide 2: Depth-First Search
	Slide 3: DFS (non-recursive)
	Slide 4: DFS Recursively (more common)
	Slide 5: Using DFS
	Slide 6: Cycle Detection
	Slide 7: Topological Sort
	Slide 8: DFS Recursively
	Slide 9: DFS Recursively
	Slide 10: DFS: Topological sort
	Slide 11: Definition: Tree
	Slide 12: Definition: Tree
	Slide 13: Definition: Spanning Tree
	Slide 14: Definition: Minimum Spanning Tree
	Slide 15: Kruskal’s Algorithm
	Slide 16: Kruskal’s Algorithm
	Slide 17: Kruskal’s Algorithm
	Slide 18: Kruskal’s Algorithm
	Slide 19: Kruskal’s Algorithm
	Slide 20: Kruskal’s Algorithm
	Slide 21: Definition: Cut
	Slide 22: Cut Theorem
	Slide 23: Cut Theorem
	Slide 24: Cut Theorem
	Slide 25: Cut Theorem
	Slide 26: Cut Theorem
	Slide 27: Proof of Kruskal’s Algorithm
	Slide 28: Kruskal’s Algorithm Runtime
	Slide 29: General MST Algorithm
	Slide 30: Prim’s Algorithm
	Slide 31: Prim’s Algorithm
	Slide 32: Prim’s Algorithm
	Slide 33: Prim’s Algorithm
	Slide 34: Prim’s Algorithm
	Slide 35: Prim’s Algorithm
	Slide 36: Dijkstra’s Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Dijkstra’s Algorithm
	Slide 39: Prim’s Algorithm

