CSE 332 Autumn 2023 Lecture 26: Topological Sort and Minimum Spanning Trees
 Nathan Brunelle
 http://www.cs.uw.edu/332

Depth-First Search

- Input: a node s
- Behavior: Start with node s, visit one neighbor of s, then all nodes reachable from that neighbor of s, then another neighbor of s, \ldots
- Output:
- Does the graph have a cycle?
- A topological sort of the graph.

DFS (non-recursive)

Running time: $\Theta(|V|+|E|)$
void dfs(graph, s)\{ found = new Stack(); found.pop(s); mark s as "visited"; While (!found.isEmpty())\{ current = found.pop(); for (v: neighbors(current))\{ if (! v marked "visited")\{ mark v as "visited"; found.push(v);
\}
\}
\}
\}

DFS Recursively (more common)

void dfs(graph, curr)\{
mark curr as "visited"; for (v: neighbors(current))\{ if (! v marked "visited")\{ dfs(graph, v);
\}
\}
mark curr as "done";

Using DFS

- Consider the "visited times" and "done times"
- Edges can be categorized:
- Tree Edge
- (a, b) was followed when pushing
- (a, b) when b was unvisited when we were at a

- Back Edge

- (a, b) goes to an "ancestor"
- a and b visited but not done when we saw (a, b)
- $t_{\text {visited }}(b)<t_{\text {visited }}(a)<t_{\text {done }}(a)<t_{\text {done }}(b)$
- Forward Edge
- (a, b) goes to a "descendent"
- b was visited and done between when a was visited and done

- $t_{\text {visited }}(a)<t_{\text {visited }}(b)<t_{\text {done }}(b)<t_{\text {done }}(a)$

- Cross Edge

- (a, b) goes to a node that doesn't connect to a
- b was seen and done before a was ever visited
- $t_{\text {done }}(b)<t_{\text {visited }}(a)$

Cycle Detection

Idea: Look for a back edge!

boolean hasCycle(graph, curr)\{
mark curr as "visited";
cycleFound = false; for (v : neighbors(current))\{
if (v marked "visited" \&\& ! v marked "done")\{ cycleFound=true;
\}
if (! v marked "visited" \&\& !cycleFound)\{ cycleFound = hasCycle(graph, v);
\}
\}
mark curr as "done"; return cycleFound;

Topological Sort

- A Topological Sort of a directed acyclic graph $\boldsymbol{G}=(\boldsymbol{V}, \boldsymbol{E})$ is a permutation of V such that if $(u, v) \in E$ then u is before v in the permutation

DFS Recursively

void dfs(graph, curr)\{

Idea: List in reverse order by "done" time
mark curr as "visited";
for (v: neighbors(current))\{
if (! v marked "visited")\{
dfs(graph, v);
\}
\}
mark curr as "done";
\}

DFS: Topological sort

 List topSort (graph)\{List<Nodes> done = new List<>();
for (Node v : graph.vertices)\{
if (!v.visited) \{
finishTime(graph, v, finished);

Idea: List in reverse order by "done" time
\}
\}
 return done;

\}
void finishLime(graph, curr, finished)\{

Definition: Tree

J

A connected graph with no cycles

Note: A tree does not need a root, but they often do!

Definition: Tree

A connected graph with no cycles

Definition: Spanning Tree

A Tree $T=\left(V_{T,}, E_{T}\right)$ which connects ("spans") all the nodes in agraph $G=(V, E)$

Any set of V-1 edges in the graph that doesn't have any cycles is guaranteed to be a spanning tree!

How many edges does T have?
V-1

Any set of V-1 edges that connects all the nodes in the graph is guaranteed to be a spanning tree!

Definition: Minimum Spanning Tree,

A Tree $T=\left(V_{T}, E_{T}\right)$ which connects ("spans") all the nodes in a graph $G=(V, E)$, that has

$$
\operatorname{Cost}(T)=\sum_{e \in E_{T}} w(e)
$$

herd $U^{-} I$ edycs
Kruskal's Algorithm
Start with an empty tree ${ }^{A}$) Cy LIe Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Kruskal's Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not create a cycle

Definition: Cut

A Cut of graph $G=(V, E)$ is a partition of the nodes into two sets, S and $V-S$

Edge $\left(v_{1}, v_{2}\right) \in E$ crosses a cut if $v_{1} \in S$ and $v_{2} \in V-S$ (or opposite), e.g. (A, C)

A set of edges R Respects a cut
if no edges cross the cut e.g. $R=\{(A, B),(E, G),(F, G)\}$

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V-$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V-$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V=$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let $(S, V-$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T, let ($S, V-$ S) be any cut which A respects. Let e be the least-weight edge which crosses $(S, V-S) . A \cup\{e\}$ is also a subset of a minimum spanning tree.

Proof of Kruskal's Algorithm

Start with an empty tree A
Repeat $V-1$ times:
Add the min-weight edge that doesn't cause a cycle

Proof: Suppose we have some arbitrary set of edges A that Kruskal's has already selected to include in the MST. $e=(F, G)$ is the edge Kruskal's selects to add next

We know that there cannot exist a path from F to G using only edges in A because e does not cause a cycle

We can cut the graph therefore into 2 disjoint sets:

- nodes reachable from G using edges in A
- nodes reachable from F using edges in A
e is the minimum cost edge that crosses this cut, so by the Cut Theorem, Kruskal's is optimal!

Kruskal's Algorithm Runtime

Start with an empty tree A Repeat $V-1$ times:

Keep edges in a Disjoint-set data structure (very fancy) $O(E \log V)$

General MST Algorithm

Start with an empty tree A

Repeat $V-1$ times:

Pick a cut $(\overline{S, V-S)}$ which A respects
Add the min-weightedge which crosses $(S, V-S)$

Prim's,Algorithm

Start with an empty tree A

Repeat $V-1$ times:
Pick a cut $((S, V-S)$ which A respects
Add the min-weight edge which crosses $(S, V-S)$
S is all endpoint of edges in A
e is the min-weight edge that grows the tree

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node
Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Prim's Algorithm

Start with an empty tree A

Pick a start node

> Keep edges in a Heap $O(E \log V)$

Repeat $V-1$ times:
Add the min-weight edge which connects to node in A with a node not in A

Dijkstra's Algorithm

int dijkstras(graph, start, end)\{
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin(); if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)\{
new_dist = current.distance + weight(current,neighbor); if(neighbor.dist != ∞) \{ PQ.insert(new_dist, neighbor);\} else if (new_dist < neighbor. distance)\{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

Prim's Algorithm

int dijkstras(graph, start, end)\{
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin();
if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)\{
new_dist = weight(current,neighbor);
if(neighbor.dist ! = ∞) \{ PQ.insert(new_dist, neighbor);\} else if (new_dist < neighbor. distance)\{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

Dijkstra's Algorithm

int dijkstras(graph, start, end)\{
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance $=0$;
while (!PQ.isEmpty)\{
current = PQ.extractmin(); if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)\{
new_dist = current.distance + weight(current,neighbor);
if(neighbor.dist ! $=\infty$) \{ PQ.insert(new_dist, neighbor);\}
else if (new_dist < neighbor. distance)\{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

Prim's Algorithm

int dijkstras(graph, start, end)\{
$P Q=$ new minheap();
PQ.insert(0, start); // priority=0, value=start
start.distance = 0;
while (!PQ.isEmpty)\{
current = PQ.extractmin();
if (current.known)\{ continue;\}
 current.known = true; for (neighbor : current.neighbors)\{ if (!neighbor.known)\{
new_dist = weight(current,neighbor);
if(neighbor.dist ! = ∞) \{ PQ.insert(new_dist, neighbor);\}
else if (new_dist < neighbor. distance)\{
neighbor. distance = new_dist; PQ.decreaseKey(new_dist,neighbor); \}
\}
\}
\}
return end.distance;

