CSE 332 Autumn 2023 Lecture 28: P and NP

Nathan Brunelle

http://www.cs.uw.edu/332

7 Bridges of Königsberg

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path starting at one landmass which crosses each bridge exactly once?

Euler Path Problem

- Path:

A sequence of nodes v_{1}, v_{2}, \ldots such that for every consecutive pair are connected by an edge (i.e. $\left(v_{i}, v_{i+1}\right)$ is an edge for each i in the path)
Euler Path:

- A path such that every edge in the graph appears exactly once
- If the graph is not simple then some paris need to appear multiple times!
- Euler path problem:

$$
4 \sim d e
$$

- Given an undirected graph $G=(V, E)$, does there exist an Euler path for G ?

Examples

- Which of the graphs below have an Euler path?

No Euler path exists!

Euler path exists!

Euler path exists!
(A, B, C, D, A, C, B, D

Euler's Theorem

- A graph has an Euler Path if and only if it is connected and has exactly 0 or 2 nodes with odd degree.

Algorithm for the Euler Path Problem

- Given an undirected graph $G=(V, E)$, does there exist an Euler path for G ?
- Algorithm:
- Check if the graph is connected
- Check the degree of each node
- If the number of nodes with odd degree is 0 or 2 , return true
- Otherwise return false
- Running time?

A Seemingly Similar Problem

- Hamiltonian Path:
- A path that includes every(node in the graph exactly once
- Hamiltonian Path Problem:
- Given a graph $G=(V, E)$, does that graph have a Hamiltonian Path?

True!
A, B, C, E, G, H, F, D

Algorithms for the Hamiltonian Path Problem

- Option 1:
- Explore all possible simple paths through the graph
- Check to-see if any of those are length V
- Option 2:
- Write down every sequence of nodes
- Check to see if any of those are a path
- Both options are examples of an Exhaustive Search ("Brute Force") algorithm

Option 2: List all sequences, look for a path

- Running time:
- $G=(V, E)$
- Number of permutations of V is $|V|$!
$\cdot n!=n \cdot(n-1) \cdot(n-2) \cdot \ldots \cdot 2 \cdot 1$
- How does n ! compare with 2^{n} ?
- $n!\in \Omega\left(2^{n}\right)$
- Exponential running time!

\qquad

Option 1: Explore all simple paths, check for one of length V

- Running time:
- $G=(V, E)$
- Number of paths
- Pick affirst node ($|V|$ choices) C
- Pick a neighbor (up to $|V|-1$ choices)
- Pick a neighbor (up to $|V|-2$ choices)
- Repeat $|V|-1$ total times - Overall: $||V|!$ paths
- Exponential running time
λ

Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instrucfions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as _taking a very long time.

Tractability

- Tractable:
- Feasible to solve in the "real world"
- Intractable:
- Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
- For, machine learning, big data, etc. tractable might mean $O(n)$ or even $/ O(\log n)$
- For most applications jt's more like $O\left(n^{3}\right)$ or $O\left(n^{2}\right)$
- A strange pattern:

- Most "natural"/problems are-either done in small-degree polynomial (e.g. n^{2}) or else exponential time (e.g. 2^{n})
- It's rare to have problems which require a running time of n^{5} for example

Complexity Classes

- A Complexity Class is a set of problems (e.g. sorting, Euler path,
- The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)
- Examples:
- The set of all problems that can be solved by an algorithm with running time $O(n)$
- Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.
- The set of all problems that can be solved by an algorithm with running time $O\left(n^{2}\right)$
- Contains: everything above as well as sorting, Euler path

Hamiltonian path)

- The set of all problems that can be solved by an algorithm with running time $O(n!)$
- Contains: everything we've seen in this class so far

Complexity Classes and Tractability

- To explore what problems are and are not tractable, we give some complexity classes special names:
- Complexity Class P:
- Stands for "Polynomial"
- The set of problems which have an algorithm whose running time is $O\left(n^{p}\right)$ for some choice of $p \in \mathbb{R}$. \qquad
- We say all problems belonging to P rere "Tractable"
- Complexity Class $E X P$:
- Stands for "Exponential"

- The set of problems which have an algorithm whose running time is $O\left(2^{n^{p}}\right)$ for some choice of $p \in \mathbb{R}$
- We say all problems belonging to EXP P are "Intractable"
- Disclaimer: Really it's all problems outside of P, and there are problems which do not belong to $E X P$, but we're not going to worry about those in this class

$E X P$ and P

Important!
 $P \subset E X P$

Every problem within P is also within $E X P$
The intractable ones are the problems within EXP but NOT P

Members

Some of the problems listed in EXP could also be members of P Since membership is determined by a problems most efficient algorithm, knowing if a problem belongs to P requires knowing

Studying Complexity and Tractability

- Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability
- The goal for each problem is to either
- Find an efficient algorithm if it exists
- i.e. show it belongs to P
- Prove that no efficient algorithm exists
- i.e. show it does not belong to P
- Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
- If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
- It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$

Some problems in EXP seem "easier"

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
- It's "hard" to look at a graph and determine whether it has a Hamiltonian Path
- It's "easy" to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
- It's easy to verify whether a given path is a Hamiltonian path

Class $N P$

- NP
- The set of problems for which a candidate solution can be verified in polynomial time
- Stands for "Non-deterministic Polynomial"
- Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
- Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search
- $P \subseteq N P$
- Why?

Solving and Verifying Hamiltonian Path

- Give an algorithm to solve Hamiltonian Path
- Input: $G=(V, E)$
- Output: True if G has a Hamiltonian Path
- Algorithm: Check whether each permutation of V is a path.
- Running time: $|V|$!, so does not show whether it belongs to P
- Give an algorithm to verify Hamiltonian Path
- Input: $G=(V, E)$ and a sequence of nodes
- Output: True if that sequence of nodes is a Hamiltonian Path
- Algorithm:
- Check that each node appears in the sequence exactly once
- Check that the sequence is a path
- Running time: $O(V \cdot E)$, so it belongs to $N P$

Party Problem

Draw Edges between people who don't get along
How many people can I invite to a party if everyone must get along?

Independent Set

- Independent set:
- $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Independent Set Problem:
- Given a graph $G=(V, E)$ and a number k, determine whether there is an independent set S of size k

Example

Solving and Verifying Independent Set

- Give an algorithm to solve independent set
- Input: $G=(V, E)$ and a number k
- Output: True if G has an independent set of size k
- Give an algorithm to verify independent set
- Input: $G=(V, E)$, a number k, and a set $S \subseteq V$
- Output: True if S is an independent set of size k

Generalized Baseball

Generalized Baseball

Vertex Cover

- Vertex Cover:
- $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Vertex Cover Problem:
- Given a graph $G=(V, E)$ and a number k, determine if there is a vertex cover C of size k

Example

Solving and Verifying Vertex Cover

- Give an algorithm to solve vertex cover
- Input: $G=(V, E)$ and a number k
- Output: True if G has a vertex cover of size k
- Give an algorithm to verify vertex cover
- Input: $G=(V, E)$, a number k, and a set $S \subseteq E$
- Output: True if S is a vertex cover of size k

