411- 110

CSE 332 Autumn 2023 Lecture 28: P and NP

Nathan Brunelle

http://www.cs.uw.edu/332

7 Bridges of Königsberg

The Pregel River runs through the city of Koenigsberg, creating 2 islands. Among these 2 islands and the 2 sides of the river, there are 7 bridges. Is there any path starting at one landmass which crosses each bridge exactly once?

- Path:
 - A sequence of nodes v_1, v_2, \dots such that for every consecutive pair are connected by an edge (i.e. (v_i, v_{i+1}) is an edge for each i in the path)
- Euler Path:

A path such that every edge in the graph appears exactly once

- If the graph is not simple then some pairs need to appear multiple times!
- Euler path problem:
 - Given an undirected graph G = (V, E), does there exist an Euler path for G?

402PY

700-250ce

Examples

• Which of the graphs below have an Euler path?

No Euler path exists!

Euler path exists! A, B, C, D, A, C, B, D

Algorithm for the Euler Path Problem

- Given an undirected graph G = (V, E), does there exist an Euler path for G?
- Algorithm:

 - Check if the graph is connected V/L
 Check the degree of each node V/L
 - If the number of nodes with odd degree is 0 or 2, return true

 $\Theta(l + E)$

- Otherwise return false /
- Running time?

A Seemingly Similar Problem

- Hamiltonian Path:
 A path that includes every node in the graph exactly once
- Hamiltonian Path Problem:
 - Given a graph G = (V, E), does that graph have a Hamiltonian Path?

True! A, B, C, E, G, H, F, D

Algorithms for the Hamiltonian Path Problem

- Option 1:
 - Explore all possible simple paths through the graph
 - Check to see if any of those are length V
- Option 2:
 - Write down every sequence of nodes
 - Check to see if any of those are a path
- Both options are examples of an Exhaustive Search ("Brute Force") algorithm

Option 2: List all sequences, look for a path • Running time: • G = (V, E)• Number of permutations of V is |V|!• $n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 2 \cdot 1$ • How does n! compare with 2^n ? • $n! \in \Omega(2^n)$ • Exponential running time!

Option 1: Explore all simple paths, check for one of length VV. (V-1)/V

- Running time:
 - G = (V, E)
 - Number of paths
 - Pick a first node (|V| choices)
 - Pick a neighbor (up to |V| 1 choices)
 - Pick a neighbor (up to |V| 2 choices)
 - Repeat $|\mathcal{K}| 1$ total times
 - Overall; VI paths
 - Exponential running time

Input Size

Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10²⁵ years, we simply record the algorithm as taking a very long time.

	n n	$n \log_2 n$	n^2	<i>n</i> ³	1.5 ⁿ	2^n	<i>n</i> !
n = 10	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	4 sec
n = 30	< 1 sec	< 1 sec	< 1 sec	< 1 sec	< 1 sec	18 min	10 ²⁵ years
n = 50	< 1 sec	< 1 sec	< 1 sec	< 1 sec	11 min	36 years	very long
n = 100	< 1 sec	< 1 sec	< 1 sec	1 sec	12,892 years	10 ¹⁷ years	very long
n = 1,000	< 1 sec	< 1 sec	1 sec	18 min	very long	very long	very long
n = 10,000	< 1 sec	< 1 sec	2 min	12 days	very long	very long	very long
n = 100,000	< 1 sec	2 sec	3 hours	32 years	very long	very long	very long
n = 1,000,000	1 sec	20 sec	12 days	31,710 years	very long	very long	very long
			~				
			l				

- Tractable:
 - Feasible to solve in the "real world"
- Intractable:
 - Infeasible to solve in the "real world"

- For machine learning, big data, etc. tractable might mean O(n) or even $O(\log n)$
- For most applications it's more like $O(n^3)$ or $O(n^2)$
- A strange pattern:
 - Most "natural" problems are either done in small-degree polynomial (e.g. n^2) or else exponential time (e.g. 2^n)
 - It's rare to have problems which require a running time of n^5 , for example

Complexity Classes

- A Complexity Class is a set of problems (e.g. sorting, Euler path, Hamiltonian path)
 - The problems included in a complexity class are those whose most efficient algorithm has a specific upper bound on its running time (or memory use, or...)
- Examples:
 - The set of all problems that can be solved by an algorithm with running time O(n)
 - Contains: Finding the minimum of a list, finding the maximum of a list, buildheap, summing a list, etc.
 - The set of all problems that can be solved by an algorithm with running time $O(n^2)$
 - Contains: everything above as well as sorting, Euler path
 - The set of all problems that can be solved by an algorithm with running time O(n!)
 - Contains: everything we've seen in this class so far

Complexity Classes and Tractability

- To explore what problems are and are not tractable, we give some complexity classes special names:
- Complexity Class P: /
 - Stands for "Polynomial"/
 - The set of problems which have an algorithm whose running time is $O(n^p)$ for some choice of $p \in \mathbb{R}$.
 - We say all problems belonging to *P* are "Tractable"
- Complexity Class₁*EXP*:
 - Stands for "Exponential"
 - The set of problems which have an algorithm whose running time is $O(2^{n^p})$ for some choice of $p \in \mathbb{R}$
 - We say all problems belonging to $EXP \rightarrow P$ are "Intractable"
 - Disclaimer: Really it's all problems outside of *P*, and there are problems which do not belong to *EXP*, but we're not going to worry about those in this class

Important!

Studying Complexity and Tractability

- Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability
- The goal for each problem is to either
 - Find an efficient algorithm if it exists
 - i.e. show it belongs to P
 - Prove that no efficient algorithm exists
 - i.e. show it does not belong to P
- Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
 - If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
 - It may be easier to show a problem belongs to class C than to P, so it may help to show that C ⊆ P

Some problems in *EXP* seem "easier"

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
 - It's "hard" to look at a graph and determine whether it has a Hamiltonian Path
 - It's "easy" to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
 - It's easy to **verify** whether a given path is a Hamiltonian path

Class NP

- *NP*
 - The set of problems for which a candidate solution can be verified in polynomial time
 - Stands for "Non-deterministic Polynomial"
 - Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
 - Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search
- $P \subseteq NP$
 - Why?

Solving and Verifying Hamiltonian Path

- Give an algorithm to solve Hamiltonian Path
 - Input: G = (V, E)
 - Output: True if G has a Hamiltonian Path
 - Algorithm: Check whether each permutation of V is a path.
 - Running time: |V|!, so does not show whether it belongs to P
- Give an algorithm to verify Hamiltonian Path
 - Input: G = (V, E) and a sequence of nodes
 - Output: True if that sequence of nodes is a Hamiltonian Path
 - Algorithm:
 - Check that each node appears in the sequence exactly once
 - Check that the sequence is a path
 - Running time: $O(V \cdot E)$, so it belongs to NP

Party Problem

Draw Edges between people who don't get along How many people can I invite to a party if everyone must get along?

Independent Set

- Independent set:
 - $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Independent Set Problem:
 - Given a graph G = (V, E) and a number k, determine whether there is an independent set S of size k

Solving and Verifying Independent Set

- Give an algorithm to solve independent set
 - Input: G = (V, E) and a number k
 - Output: True if G has an independent set of size k
- Give an algorithm to verify independent set
 - Input: G = (V, E), a number k, and a set $S \subseteq V$
 - Output: True if *S* is an independent set of size *k*

Need to place defenders on bases such that every edge is defended

How many defenders would suffice?

Vertex Cover

- Vertex Cover:
 - $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Vertex Cover Problem:
 - Given a graph G = (V, E) and a number k, determine if there is a vertex cover C of size k

Solving and Verifying Vertex Cover

- Give an algorithm to solve vertex cover
 - Input: G = (V, E) and a number k
 - Output: True if *G* has a vertex cover of size *k*
- Give an algorithm to verify vertex cover
 - Input: G = (V, E), a number k, and a set $S \subseteq E$
 - Output: True if *S* is a vertex cover of size *k*