CSE 332 Autumn 2023 Lecture 29: P and NP
 Nathan Brunelle

http://www.cs.uw.edu/332

Euler Path Problem

- Path:

- A sequence of nodes v_{1}, v_{2}, \ldots such that for every consecutive pair are connected by an edge (i.e. (v_{i}, v_{i+1}) is an edge for each i in the path)
- Euler Path:
- A path such that every edge in the graph appears exactly once
- If the graph is not simple then some pairs need to appear multiple times!
- Euler path problem:
- Given an undirected graph $G=(V, E)$, does there exist an Euler path for G ?

Algorithm for the Euler Path Problem

- Given an undirected graph $G=(V, E)$, does there exist an Euler path for G ?
- Algorithm:
- Check if the graph is connected
- Check the degree of each node
- If the number of nodes with odd degree is 0 or 2 , return true
- Otherwise return false
- Running time?
- $O(V+E)$

A Seemingly Similar Problem

- Hamiltonian Path:
- A path that includes every node in the graph exactly once
- Hamiltonian Path Problem:
- Given a graph $G=(V, E)$, does that graph have a Hamiltonian Path?

Algorithms for the Hamiltonian Path Problem

- Option 1:
- Explore all possible simple paths through the graph
- Check to see if any of those are length V
- Running time: $O(V!)$
- Option 2:
- Write down every sequence of nodes
- Check to see if any of those are a path
- $O(V!)$
- Both options are examples of an Exhaustive Search ("Brute Force") algorithm

Tractability

- Tractable:
- Feasible to solve in the "real world"
- Intractable:
- Infeasible to solve in the "real world"
- Whether a problem is considered "tractable" or "intractable" depends on the use case
- For machine learning, big data, etc. tractable might mean $O(n)$ or even $O(\log n)$
- For most applications it's more like $O\left(n^{3}\right)$ or $O\left(n^{2}\right)$
- A strange pattern:
- Most "natural" problems are either done in small-degree polynomial (e.g. n^{2}) or else exponential time (e.g. 2^{n})
- It's rare to have problems which require a running time of n^{5}, for example

Running Times

Table 2.1 The running times (rounded up) of different algorithms on inputs of increasing size, for a processor performing a million high-level instructions per second. In cases where the running time exceeds 10^{25} years, we simply record the algorithm as taking a very long time.

	n	$n \log _{2} n$	n^{2}	n^{3}	1.5^{n}	2^{n}	$n!$
$n=10$	$<1 \mathrm{sec}$	4 sec					
$n=30$	$<1 \mathrm{sec}$	18 min	10^{25} years				
$n=50$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	11 min	36 years	very long
$n=100$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	12,892 years	10^{17} years	very long
$n=1,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	1 sec	18 min	very long	very long	very long
$n=10,000$	$<1 \mathrm{sec}$	$<1 \mathrm{sec}$	2 min	12 days	very long	very long	very long
$n=100,000$	$<1 \mathrm{sec}$	2 sec	3 hours	32 years	very long	very long	very long
$n=1,000,000$	1 sec	20 sec	12 days	31,710 years	very long	very long	very long

$E X P$ and P

Important!
 $P \subset E X P$

Members

Some of the problems listed in EXP could also be members of P Since membership is determined by a problems most efficient algorithm, knowing if a problem belongs to P requires knowing

Studying Complexity and Tractability

- Organizing problems into complexity classes helps us to reason more carefully and flexibly about tractability
- The goal for each problem is to either
- Find an efficient algorithm if it exists
- i.e. show it belongs to P
- Prove that no efficient algorithm exists
- i.e. show it does not belong to P
- Complexity classes allow us to reason about sets of problems at a time, rather than each problem individually
- If we can find more precise classes to organize problems into, we might be able to draw conclusions about the entire class
- It may be easier to show a problem belongs to class C than to P, so it may help to show that $C \subseteq P$

Some problems in EXP seem "easier"

- There are some problems that we do not have polynomial time algorithms to solve, but provided answers are easy to check
- Hamiltonian Path:
- It's "hard" to look at a graph and determine whether it has a Hamiltonian Path
- It's "easy" to look at a graph and a candidate path together and determine whether THAT path is a Hamiltonian Path
- It's easy to verify whether a given path is a Hamiltonian path

Class $N P$

- NP
- The set of problems for which a candidate solution can be verified in polynomial time
- Stands for "Non-deterministic Polynomial"
- Corresponds to algorithms that can guess a solution (if it exists), that solution is then verified to be correct in polynomial time
- Can also think of as allowing a special operation that allows the algorithm to magically guess the right choice at each step of an exhaustive search (or other algorithm)
- $P \subseteq N P$
- Why?

Solving and Verifying Hamiltonian Path

- Algorithm to solve Hamiltonian Path

- Input: $G=(V, E)$
- Output: True if G has a Hamiltonian Path
- Algorithm: Check whether each permutation of V is a path.
- Running time: $|V|$!, so does not show whether it belongs to P
- Algorithm to verify Hamiltonian Path
- Input: $G=(V, E)$ and a sequence of nodes
- Output: True if that sequence of nodes is a Hamiltonian Path
- Algorithm:
- Check that each node appears in the sequence exactly once
- Check that the sequence is a path
- Running time: $O(|V| \cdot|E|)$, so it belongs to $N P$

Party Problem

Draw Edges between people who don't get along
How many people can I invite to a party if everyone must get along?

Independent Set

- Independent set:
- $S \subseteq V$ is an independent set if no two nodes in S share an edge
- Independent Set Problem:
- Given a graph $G=(V, E)$ and a number k, determine whether there is an independent set S of size k

Example

Solving and Verifying Independent Set

- Algorithm to solve independent set
- Input: $G=(V, E)$ and a number k
- Output: True if G has an independent set of size k
- List every subset of V that has size k
- $\approx|V|^{|V|-k}$
- For each of the subsets, check whether any pair of nodes are adjacent
- $k \cdot|E|$
- Give an algorithm to verify independent set
- Input: $G=(V, E)$, a number k, and a set $S \subseteq V$
- Output: True if S is an independent set of size k

Generalized Baseball

Generalized Baseball

Vertex Cover

- Vertex Cover:
- $C \subseteq V$ is a vertex cover if every edge in E has one of its endpoints in C
- Vertex Cover Problem:
- Given a graph $G=(V, E)$ and a number k, determine if there is a vertex cover C of size k

Example

Solving and Verifying Vertex Cover

- Algorithm to solve vertex cover
- Input: $G=(V, E)$ and a number k
- Output: True if G has a vertex cover of size k
- Algorithm to verify vertex cover
- Input: $G=(V, E)$, a number k, and a set $S \subseteq E$
- Output: True if S is a vertex cover of size k

Way Cool!

S is an independent set of G iff $V-S$ is a vertex cover of G

Vertex Cover

Way Cool!

S is an independent set of G iff $V-S$ is a vertex cover of G

Vertex Cover

Independent Set

Solving Vertex Cover and Independent Set

- Algorithm to solve vertex cover
- Input: $G=(V, E)$ and a number k
- Output: True if G has a vertex cover of size k
- Check if there is an Independent Set of G of size $|V|-k$
- Algorithm to solve independent set
- Input: $G=(V, E)$ and a number k
- Output: True if G has an independent set of size k
- Check if there is a Vertex Cover of G of size $|V|-k$

Either both problems belong to P, or else neither does!

NP-Complete

- A set of "together they stand, together they fall" problems
- The problems in this set either all belong to P, or none of them do
- Intuitively, the "hardest" problems in NP
- Collection of problems from $N P$ that can all be "transformed" into each other in polynomial time
- Like we could transform independent set to vertex cover, and vice-versa
- We can also transform vertex cover into Hamiltonian path, and Hamiltonian path into independent set, and ...

$E X P \supset N P-$ Complete $\supseteq N P \supseteq P$

$P=N P$ iff some problem from
NP - Complete belongs to P

Overview

- Problems not belonging to P are considered intractable
- The problems within $N P$ have some properties that make them seem like they might be tractable, but we've been unsuccessful with finding polynomial time algorithms for many
- The class $N P$ - Complete contains problems with the properties:
- All members are also members of $N P$
- All members of $N P$ can be transformed into every member of $N P-$ Complete
- Therefore if any one member of $N P$ - Complete belongs to P, then $P=N P$

Why should YOU care?

- If you can find a polynomial time algorithm for any $N P$ - Complete problem then:
- You will win $\$ 1$ million
- You will win a Turing Award
- You will be world famous
- You will have done something that no one else on Earth has been able to do in spite of the above!
- If you are told to write an algorithm a problem that is $N P$ - Complete
- You can tell that person everything above to set expectations
- Change the requirements!
- Approximate the solution: Instead of finding a path that visits every node, find a path that visits at least 75\% of the nodes
- Add Assumptions: problem might be tractable if we can assume the graph is acyclic, a tree
- Use Heuristics: Write an algorithm that's "good enough" for small inputs, ignore edge cases

