CSE 332 Autumn 2023 Lecture 5: Priority Queues

Nathan Brunelle
http://www.cs.uw.edu/332

Goals for Algorithm Analysis

- Identify a function which maps the algorithm's input size to a measure of resources used
- Domain of the function: sizes of the input
- Number of characters in a string, number of items in a list, number of pixels in an image
- Codomain of the function: counts of resources used
- Number of times the algorithm adds two numbers together, number times the algorithm does a > or < comparison, maximum number of bytes of memory the algorithm uses at any time
- Important note: Make sure you know the "units" of your domain and codomain!
- Domain = inputs to the function
- Codomain = outputs to the function

Worst Case Running Time Analysis

- If an algorithm has a worst case running time of $f(n)$
- Among all possible size- n inputs, the "worst" one will do $f(n)$ "operations"
- I.e. $f(n)$ gives the maximum operation count from among all inputs of size n

Comparing

Asymptotic Notation

- $O(g(n))$
- The set of functions with asymptotic behavior less than or equal to $g(n)$
- Upper-bounded by a constant times g for large enough values n
- $f \in O(g(n)) \equiv \exists c>0 . \exists n_{0}>0 . \forall n \geq n_{0} . f(n) \leq c \cdot g(n)$
- $\Omega(g(n))$
- the set of functions with asymptotic behavior greater than or equal to $g(n)$
- Lower-bounded by a constant times g for large enough values n
- $f \in \Omega(g(n)) \equiv \exists c>0 . \exists n_{0}>0 . \forall n \geq n_{0} . f(n) \geq c \cdot g(n)$
- $\Theta(g(n))$
- "Tightly" within constant of g for large n
- $\Omega(g(n)) \cap O(g(n))$

Asymptotic Notation Example

- Show: $10 n+100 \in O\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n>n_{0} .10 n+100 \leq c \cdot n^{2}$
- Proof:

Asymptotic Notation Example

- Show: $10 n+100 \in O\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .10 n+100 \leq c \cdot n^{2}$
- Proof: Let $c=10$ and $n_{0}=6$. Show $\forall n \geq 6.10 n+100 \leq 10 n^{2}$

$$
\begin{aligned}
& 10 n+100 \leq 10 n^{2} \\
\equiv & n+10 \leq n^{2} \\
\equiv & 10 \leq n^{2}-n \\
\equiv & 10 \leq n(n-1)
\end{aligned}
$$

This is True because $n(n-1)$ is strictly increasing and 6(6-1) >10

Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof:

Asymptotic Notation Example

- Show: $13 \mathrm{n}^{2}-50 \mathrm{n} \in \Omega\left(n^{2}\right)$
- Technique: find values $c>0$ and $n_{0}>0$ such that $\forall n \geq n_{0} .13 n^{2}-50 n \geq c \cdot n^{2}$
- Proof: let $c=12$ and $n_{0}=50$. Show $\forall n \geq 50.13 n^{2}-50 n \geq 12 n^{2}$

$$
\begin{aligned}
& 13 n^{2}-50 n \geq 12 n^{2} \\
\equiv & n^{2}-50 n \geq 0 \\
\equiv & n^{2} \geq 50 n \\
\equiv & n \geq 50
\end{aligned}
$$

This is certainly true $\forall n \geq 50$.

```
myFunction(List n){
    b = 55 + 5;
    c = b / 3;
    b = c + 100;
    for (i=0; i < n.size(); i++) {
        b++;
    }
    if (b % 2 == 0) {
        c++;
    }
    else {
        for (i=0; i < n.size(); i++) {
            c++;
        }
    }
    return c;
}
```

Worst Case Running Time - Example

Questions to ask:

- What are the units of the input size?
- What are the operations we're counting?
- For each line:
- How many times will it run?
- How long does it take to run?
- Does this change with the input size?

Worst Case Running Time - Example 2

beAnnoying(List n$)\{$

List $\mathrm{m}=[]$;
for ($\mathrm{i}=0$; i < n.size(); $\mathrm{i}++$) $\{$ m.add(n[i]); for ($\mathrm{j}=0$; $\mathrm{j}<\mathrm{n} . \operatorname{size()}$) $\mathrm{j}++$) $\{$ print ("Hi, I'm annoying"); \}
\}
return;

Questions to ask:

- What are the units of the input size?
- What are the operations we're counting?
- For each line:
- How many times will it run?
- How long does it take to run?
- Does this change with the input size?

Gaining Intuition

- When doing asymptotic analysis of functions:
- If multiple expressions are added together, ignore all but the "biggest"
- If $f(n)$ grows asymptotically faster than $g(n)$, then $f(n)+g(n) \in \Theta(f(n))$
- Ignore all multiplicative constants
- $f(n)+c \in \Theta(f(n))$ for any constant $c \in \mathbb{R}$
- Ignore bases of logarithms
- Do NOT ignore:
- Non-multiplicative and non-additive constants (e.g. in exponents, bases of exponents)
- Logarithms themselves

More Examples

- Is each of the following True or False?
- $4+3 n \in O(n)$
- $n+2 \log n \in O(\log n)$
- $\log n+2 \in O(1)$
- $n^{50} \in O\left(1.1^{n}\right)$
- $3^{n} \in \Theta\left(2^{n}\right)$

Common Categories

- O(1) "constant"
- $O(\log n)$ "logarithmic"
- $O(n)$ "linear"
- $O(n \log n)$ "log-linear"
- $O\left(n^{2}\right)$ "quadratic"
- $O\left(n^{3}\right) \quad$ "cubic"
- $O\left(n^{k}\right)$ "polynomial"
- $O\left(k^{n}\right)$ "exponential"

Defining your running time function

- Worst-case complexity:
- max number of steps algorithm takes on "most challenging" input
- Best-case complexity:
- min number of steps algorithm takes on "easiest" input
- Average/expected complexity:
- avg number of steps algorithm takes on random inputs (context-dependent)
- Amortized complexity:
- max total number of steps algorithm takes on M "most challenging" consecutive inputs, divided by M (i.e., divide the max total sum by M).

ADT: Queue

- What is it?

- A "First In First Out" (FIFO) collection of items
- What Operations do we need?
- Enqueue
- Add a new item to the queue
- Dequeue
- Remove the "oldest" item from the queue
- Is_empty
- Indicate whether or not there are items still on the queue

ADT: Priority Queue

- What is it?
- A collection of items and their "priorities"
- Allows quick access/removal to the "top priority" thing
- What Operations do we need?
- insert(item, priority)
- Add a new item to the PQ with indicated priority
- Usually, smaller priority value means more important
- deleteMin
- Remove and return the "top priority" item from the queue
- Is_empty
- Indicate whether or not there are items still on the queue
- Note: the "priority" value can be any type/class so long as it's comparable (i.e. you can use "<" or "compareTo" with it)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
PQ.insert(3,3)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Priority Queue, example

PriorityQueue PQ = new PriorityQueue();
PQ.insert(5,5)
PQ.insert(6,6)
PQ.insert(1,1)
Print(PQ.deleteMin)
PQ.insert(3,3)
Print(PQ.deleteMin)
Print(PQ.deleteMin)
PQ.insert(8,8)
Print(PQ.deleteMin)
Print(PQ.deleteMin)

Applications?

Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to deleteMin
Unsorted Array		
Unsorted Linked List		
Sorted Circular Array		
Sorted Linked List		
Binary Search Tree		

Note: Assume we know the maximum size of the PQ in advance

Thinking through implementations

Data Structure	Worst case time to insert	Worst case time to deleteMin
Unsorted Array	$\Theta(1)$	$\Theta(n)$
Unsorted Linked List	$\Theta(1)$	$\Theta(n)$
Sorted Circular Array	$\Theta(\log n)$	$\Theta(n)$
Sorted Linked List	$\Theta(n)$	$\Theta(1)$
Binary Search Tree	$\Theta(n)$	$\Theta(1)$

Note: Assume we know the maximum size of the PQ in advance

Heap - Priority Queue Data Structure

- Idea: We need to keep some ordering, but it doesn't need to be perfectly sorted
- $\Theta(\log n)$ worst case for deleteMin and insert

Heap - Priority Queue Data Structure

- Idea: We need to keep some ordering, but it doesn't need to be perfectly sorted
- $\Theta(\log n)$ worst case for deleteMin and insert

Tree Terminology - Review?

- $\operatorname{root}(T)$:
- leaves(T):
- children(3):
- parent(4):
- siblings(7):
- ancestors(9):
- descendents(3):
- subtree(4):
- height(T):
- depth(4):
- branchingFactor(T):

Trees for Heaps

- Binary Trees:
- The branching factor is 2
- Every node has ≤ 2 children
- Complete Tree:
- All "layers" are full, except the bottom
- Bottom layer filled left-to-right

Challenge!

- What is the maximum number of total nodes in a binary tree of height h ?
- If I have n nodes in a binary tree, what is the its minimum height?

Challenge!

- What is the maximum number of total nodes in a binary tree of height h ?
- $2^{h+1}-1$
- $\Theta\left(2^{h}\right)$
- If I have n nodes in a binary tree, what is its minimum height?
- $\left\lceil\log _{2} n\right\rceil$
- $\Theta(\log n)$
- Heap Idea:
- If n values are inserted into a complete tree, the height will be roughly $\log n$
- Ensure each insert and deleteMin requires just one "trip" from root to leaf

Heap Data Structure

- Keep items in a complete binary tree
- Maintain the "Heap Property" of the tree
- Every node's priority is \leq its children's priority
-Where is the min?
- How do I insert?
- How do I deleteMin?
- How to do it in Java?

Heap Insert

insert(item)\{
put item in the "next open" spot (keep tree complete) while (item.priority < parent(item).priority)\{
swap item with parent
\}
\}

Heap Insert

insert(item)\{
put item in the "next open" spot (keep tree complete)while (item.priority < parent(item).priority)\{
swap item with parent
\}

Heap Insert

insert(item)\{

put item in the "next open" spot (keep tree complete)
while (item.priority < parent(item).priority)\{
swap item with parent
Percolate Up

Heap Insert

insert(item)\{

put item in the "next open" spot (keep tree complete)
while (item.priority < parent(item).priority)\{
swap item with parent

- Percolate Up

Heap Insert

insert(item)\{
put item in the "next open" spot (keep tree complete)
while (item.priority < parent(item).priority)\{
swap item with parent
\}
\}

Heap deleteMin

deleteMin()\{
$\min =$ root
br = bottom-right item
move br to the root
while(br > either of its children)\{
swap br with its smallest child
\}
return min

Heap deleteMin

deleteMin()\{
$\min =$ root
br = bottom-right item
move br to the root
while(br > either of its children)\{
swap br with its smallest child
\}
return min

Heap deleteMin

deleteMin()\{

$\min =$ root
br = bottom-right item move br to the root while(br > either of its children)\{ swap br with its smallest child \}
return min

Heap deleteMin

deleteMin()\{

$\min =$ root
br = bottom-right item move br to the root while(br > either of its children)\{ swap br with its smallest child \}
return min

Heap deleteMin

deleteMin()\{
$\min =$ root
br = bottom-right item
move br to the root
while(br > either of its children)\{
swap br with its smallest child
\}
return min

