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Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table
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Linear Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 1 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• …
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Linear Probing: Find

• 𝑖 = ℎ 𝑘 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒
• If 𝑖 has the key or it’s empty, then we’re done

• Otherwise:
• Check 𝑖 + 1 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒 if it’s there, done else

• Check 𝑖 + 2 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒 if it’s there, done else

• Check 𝑖 + 3 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• …

• Until we hit an empty cell



Linear Probing: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒 𝑖 is occupied and does not contain 𝑘 then look at 𝑖 + 1 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 2 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 3 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• Repeat until you either find 𝑘 or else you reach an empty cell in the table



Linear Probing: Delete

• Problem: don’t want to leave an empty space when deleting

• Option 1: when we delete, move the “last thing” with a matching 
hash to that location

• Option 2: “tombstone” deletion. When deleting something, leave a 
special marker to indicate something used to be there

•



Linear Probing: Delete

• Option 1: Find the last thing with a matching hash, move that into the 
spot you deleted from

• Option 2: Called “tombstone” deletion. Leave a special object that 
indicates an object was deleted from there
• The tombstone does not act as an open space when finding (so keep looking 

after its reached)

• When inserting you can replace a tombstone with a new item

𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣
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Downsides of Linear Probing

• What happens when 𝜆 approaches 1?
• Longer and longer clusters of items

• Runnings times get longer and longer



Quadratic Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 12 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 22 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 32 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 42 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• …
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Quadratic Probing: Example

• Insert:
• 76

• 40 

• 48 

• 5 

• 55 

• 47
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Using Quadratic Probing

• If you probe 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 times, you start repeating the same indices

• If 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 is prime and 𝜆 <
1

2
then you’re guaranteed to find an 

open spot in at most 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒/2 probes

• Helps with the clustering problem of linear probing, but does not help 
if many things hash to the same value



Double Hashing: Insert Procedure

• Given ℎ and 𝑔 are both good hash functions

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 4 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• …
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Rehashing

• If your load factor 𝜆 gets too large, copy everything over to a larger 
hash table
• To do this: make a new array with a new hash function (maybe just a new 

modulus)

• Re-insert all items into the new hash table with the new hash function

• New hash table should be “roughly” double the size (but probably still want it 
to be prime)

• General Guideline:
• Separate Chaining: rehash when 𝜆 = 2

• Open Addressing: rehash when 𝜆 =
1

2



Sorting

• Rearrangement of items into some defined sequence
• Usually: reordering a list from smallest to largest according to some metric

• Why sort things?



More Formal Definition

• Input:
• An array 𝐴 of items

• A comparison function for these items
• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Permutation: a sequence of the same items but perhaps in a different order



Sorting “Landscape”

• There is no singular best algorithm for sorting

• Some are faster, some are slower

• Some use more memory, some use less

• Some are super extra fast if your data matches particular assumptions

• Some have other special properties that make them valuable

• No sorting algorithm can have only all the “best” attributes



“Moving Day” Sorting Algorithm
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Selection Sort

• Idea: Find the next smallest element, swap it into the 
next index in the array

18
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Selection Sort
• Swap the thing at index 0 with the smallest thing in the array
• Swap the thing at index 1 with the smallest thing after index 0
• …
• Swap the thing at index 𝑖 with the smallest thing after index 𝑖 − 1

for (i=0; i<a.length; i++){
        smallest = i;
        for (j=i; j<a.length; j++){
                if (a[j]<a[smallest]){ smallest=j;}
        }
        temp = a[i];
        a[i] = a[smallest];
        a[smallest] = a[i];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix 
by “inserting” the next element

20
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Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix



Insertion Sort
• If the items at index 0 and 1 are out of order, swap them

• Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

• …

• Keep swapping the item at index 𝑖 with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){
        prev = i-1;
        while(a[i] < a[prev] && prev > -1){
                temp = a[i];
                a[i] = a[prev];
                a[prev] = a[i];
                i--;
                prev--;
        }
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



Aside: Bubble Sort – we won’t cover it

"the bubble sort seems to have 
nothing to recommend it, except a 
catchy name and the fact that it leads 
to some interesting theoretical 
problems” –Donald Knuth, The Art of 
Computer Programming



Heap Sort
• Idea: Build a maxHeap, repeatedly delete the max 

element from the heap to build sorted list Right-to-Left
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Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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Percolate Down(node): if node satisfies heap 
property, done. Else swap with largest child and 
repeat on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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Percolate Down(node): if node satisfies heap 
property, done. Else swap with largest child and 
repeat on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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Percolate Down(node): if node satisfies heap 
property, done. Else swap with largest child and 
repeat on that subtree



Heap Sort
• Remove the Max element (i.e. the root) from the Heap: 

replace with last element, call percolateDown(root)
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property, done. Else swap with largest child and 
repeat on that subtree



Heap Sort
• Build a heap

• Call deleteMax

• Put that at the end of the array

myHeap = buildHeap(a);
for (int i = a.length-1; i>=0; i--){
        item = myHeap.deleteMax();
        a[i] = item;
} 

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



“In Place” Sorting Algorithm

• A sorting algorithm which requires no extra data structures

• Idea: It sorts items just by swapping things in the same array given

• Definition: it only uses Θ(1) extra space

• Selection sort: In Place!

• Insertion sort: In Place!

• Heap sort: Not In Place!
• But we can fix that!



In Place Heap Sort
• Idea: When “removing” an element from the heap, swap 

it with the last item of the heap then “pretend” the heap 
is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter

31
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter

33
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter

35
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Heap Sort
• Idea: When “removing” an element from the heap, 

swap it with the last item of the heap then “pretend” 
the heap is one item shorter

36
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In Place Heap Sort
• Build a heap using the same array (Floyd’s build heap algorithm works)

• Call deleteMax

• Put that at the end of the array

buildHeap(a);
for (int i = a.length-1; i>=0; i--){
        temp=a[i]
        a[i] = a[0];
        a[0] = temp;
        percolateDown(0);
} 

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)



Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
    for(int i = size; i>0; i--){
        percolateDown(i);
    }
}
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