
CSE 332 Winter 2024
Lecture 13: Hashing and Sorting

Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Collision Resolution: Linear Probing

• When there’s a collision, use the next open space in the table

0 1 2 3 4 5 6 7 8 9

Linear Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 1 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Linear Probing: Find

• 𝑖 = ℎ 𝑘 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒
• If 𝑖 has the key or it’s empty, then we’re done

• Otherwise:
• Check 𝑖 + 1 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒 if it’s there, done else

• Check 𝑖 + 2 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒 if it’s there, done else

• Check 𝑖 + 3 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• …

• Until we hit an empty cell

Linear Probing: Find

• To find key 𝑘
• Calculate 𝑖 = ℎ 𝑘 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒 𝑖 is occupied and does not contain 𝑘 then look at 𝑖 + 1 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 2 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied and does not contain 𝑘 then look at 𝑖 + 3 %𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• Repeat until you either find 𝑘 or else you reach an empty cell in the table

Linear Probing: Delete

• Problem: don’t want to leave an empty space when deleting

• Option 1: when we delete, move the “last thing” with a matching
hash to that location

• Option 2: “tombstone” deletion. When deleting something, leave a
special marker to indicate something used to be there

•

Linear Probing: Delete

• Option 1: Find the last thing with a matching hash, move that into the
spot you deleted from

• Option 2: Called “tombstone” deletion. Leave a special object that
indicates an object was deleted from there
• The tombstone does not act as an open space when finding (so keep looking

after its reached)

• When inserting you can replace a tombstone with a new item

𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣 𝑘, 𝑣

0 1 2 3 4 5 6 7 8 9

Downsides of Linear Probing

• What happens when 𝜆 approaches 1?
• Longer and longer clusters of items

• Runnings times get longer and longer

Quadratic Probing: Insert Procedure

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 12 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 22 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 32 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 42 % 𝑎𝑟𝑟𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Quadratic Probing: Example

• Insert:
• 76

• 40

• 48

• 5

• 55

• 47

0 1 2 3 4 5 6

Using Quadratic Probing

• If you probe 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 times, you start repeating the same indices

• If 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒 is prime and 𝜆 <
1

2
then you’re guaranteed to find an

open spot in at most 𝑡𝑎𝑏𝑙𝑒𝑠𝑖𝑧𝑒/2 probes

• Helps with the clustering problem of linear probing, but does not help
if many things hash to the same value

Double Hashing: Insert Procedure

• Given ℎ and 𝑔 are both good hash functions

• To insert 𝑘, 𝑣
• Calculate 𝑖 = ℎ 𝑘 % 𝑠𝑖𝑧𝑒

• If 𝑡𝑎𝑏𝑙𝑒[𝑖] is occupied then try 𝑖 + 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 2 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 3 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• If that is occupied try 𝑖 + 4 ⋅ 𝑔 𝑘 % 𝑠𝑖𝑧𝑒

• …

0 1 2 3 4 5 6 7 8 9

Rehashing

• If your load factor 𝜆 gets too large, copy everything over to a larger
hash table
• To do this: make a new array with a new hash function (maybe just a new

modulus)

• Re-insert all items into the new hash table with the new hash function

• New hash table should be “roughly” double the size (but probably still want it
to be prime)

• General Guideline:
• Separate Chaining: rehash when 𝜆 = 2

• Open Addressing: rehash when 𝜆 =
1

2

Sorting

• Rearrangement of items into some defined sequence
• Usually: reordering a list from smallest to largest according to some metric

• Why sort things?

More Formal Definition

• Input:
• An array 𝐴 of items

• A comparison function for these items
• Given two items 𝑥 and 𝑦, we can determine whether 𝑥 < 𝑦, 𝑥 > 𝑦, or 𝑥 = 𝑦

• Output:
• A permutation of 𝐴 such that if 𝑖 ≤ 𝑗 then 𝐴 𝑖 ≤ 𝐴[𝑗]

• Permutation: a sequence of the same items but perhaps in a different order

Sorting “Landscape”

• There is no singular best algorithm for sorting

• Some are faster, some are slower

• Some use more memory, some use less

• Some are super extra fast if your data matches particular assumptions

• Some have other special properties that make them valuable

• No sorting algorithm can have only all the “best” attributes

“Moving Day” Sorting Algorithm

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10
18

23
19

5

41

30
21

64

77

24

15

3

33

22

2

Selection Sort

• Idea: Find the next smallest element, swap it into the
next index in the array

18

1 2 3 4 5 6 10 8 7 9 12 11

Already In Position

1 2 3 4 5 6 7 8 10 9 12 11

Already In Position

Selection Sort
• Swap the thing at index 0 with the smallest thing in the array
• Swap the thing at index 1 with the smallest thing after index 0
• …
• Swap the thing at index 𝑖 with the smallest thing after index 𝑖 − 1

for (i=0; i<a.length; i++){
 smallest = i;
 for (j=i; j<a.length; j++){
 if (a[j]<a[smallest]){ smallest=j;}
 }
 temp = a[i];
 a[i] = a[smallest];
 a[smallest] = a[i];
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)

Insertion Sort

• Idea: Maintain a sorted list prefix, extend that prefix
by “inserting” the next element

20

3 5 7 8 10 12 9 2 4 6 1 11

Sorted Prefix

3 5 7 8 10 9 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

3 5 7 8 9 10 12 2 4 6 1 11

Sorted Prefix

Insertion Sort
• If the items at index 0 and 1 are out of order, swap them

• Keep swapping the item at index 2 with the thing to its left as long as the left thing is larger

• …

• Keep swapping the item at index 𝑖 with the thing to its left as long as the left thing is larger

for (i=1; i<a.length; i++){
 prev = i-1;
 while(a[i] < a[prev] && prev > -1){
 temp = a[i];
 a[i] = a[prev];
 a[prev] = a[i];
 i--;
 prev--;
 }
}

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

10 77 5 15 2 22 64 41 18 19 30 21 3 24 23 33

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)

Aside: Bubble Sort – we won’t cover it

"the bubble sort seems to have
nothing to recommend it, except a
catchy name and the fact that it leads
to some interesting theoretical
problems” –Donald Knuth, The Art of
Computer Programming

Heap Sort
• Idea: Build a maxHeap, repeatedly delete the max

element from the heap to build sorted list Right-to-Left

23

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

Max Heap
Property: Each
node is larger
than its children

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8 9

Heap Sort
• Remove the Max element (i.e. the root) from the Heap:

replace with last element, call percolateDown(root)

24

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8

Percolate Down(node): if node satisfies heap
property, done. Else swap with largest child and
repeat on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the Heap:

replace with last element, call percolateDown(root)

25

9

3 6

8 7 5 2

4 1

9 3 6 8 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8

Percolate Down(node): if node satisfies heap
property, done. Else swap with largest child and
repeat on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the Heap:

replace with last element, call percolateDown(root)

26

9

8 6

3 7 5 2

4 1

9 8 6 3 7 5 2 4 1

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8

Percolate Down(node): if node satisfies heap
property, done. Else swap with largest child and
repeat on that subtree

Heap Sort
• Remove the Max element (i.e. the root) from the Heap:

replace with last element, call percolateDown(root)

27

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8

Percolate Down(node): if node satisfies heap
property, done. Else swap with largest child and
repeat on that subtree

Heap Sort
• Build a heap

• Call deleteMax

• Put that at the end of the array

myHeap = buildHeap(a);
for (int i = a.length-1; i>=0; i--){
 item = myHeap.deleteMax();
 a[i] = item;
}

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)

“In Place” Sorting Algorithm

• A sorting algorithm which requires no extra data structures

• Idea: It sorts items just by swapping things in the same array given

• Definition: it only uses Θ(1) extra space

• Selection sort: In Place!

• Insertion sort: In Place!

• Heap sort: Not In Place!
• But we can fix that!

In Place Heap Sort
• Idea: When “removing” an element from the heap, swap

it with the last item of the heap then “pretend” the heap
is one item shorter

30

10

9 6

8 7 5 2

4 1 3

10 9 6 8 7 5 2 4 1 3

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8 9

Heap Sort
• Idea: When “removing” an element from the heap,

swap it with the last item of the heap then “pretend”
the heap is one item shorter

31

3

9 6

8 7 5 2

4 1

3 9 6 8 7 5 2 4 1 10

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8

Heap Sort
• Idea: When “removing” an element from the heap,

swap it with the last item of the heap then “pretend”
the heap is one item shorter

32

9

8 6

4 7 5 2

3 1

9 8 6 4 7 5 2 3 1 10

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7 8

Heap Sort
• Idea: When “removing” an element from the heap,

swap it with the last item of the heap then “pretend”
the heap is one item shorter

33

1

8 6

4 7 5 2

3

1 8 6 4 7 5 2 3 9 10

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7

Heap Sort
• Idea: When “removing” an element from the heap,

swap it with the last item of the heap then “pretend”
the heap is one item shorter

34

8

7 6

4 1 5 2

3

1 8 6 4 7 5 2 3 9 10

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

7

Heap Sort
• Idea: When “removing” an element from the heap,

swap it with the last item of the heap then “pretend”
the heap is one item shorter

35

3

7 6

4 1 5 2

3 8 6 4 7 5 2 8 9 10

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

Heap Sort
• Idea: When “removing” an element from the heap,

swap it with the last item of the heap then “pretend”
the heap is one item shorter

36

7

4 6

3 1 5 2

3 8 6 4 7 5 2 8 9 10

0 1 2 3 4 5 6 7 8 9

0

1 2

3 54 6

In Place Heap Sort
• Build a heap using the same array (Floyd’s build heap algorithm works)

• Call deleteMax

• Put that at the end of the array

buildHeap(a);
for (int i = a.length-1; i>=0; i--){
 temp=a[i]
 a[i] = a[0];
 a[0] = temp;
 percolateDown(0);
}

Running Time:
 Worst Case: Θ(⋅)
 Best Case: Θ(⋅)

Floyd’s buildHeap method

• Working towards the root, one row at a time, percolate down

buildHeap(){
 for(int i = size; i>0; i--){
 percolateDown(i);
 }
}

	Slide 1: CSE 332 Winter 2024 Lecture 13: Hashing and Sorting
	Slide 2: Collision Resolution: Linear Probing
	Slide 3: Linear Probing: Insert Procedure
	Slide 4: Linear Probing: Find
	Slide 5: Linear Probing: Find
	Slide 6: Linear Probing: Delete
	Slide 7: Linear Probing: Delete
	Slide 8: Downsides of Linear Probing
	Slide 9: Quadratic Probing: Insert Procedure
	Slide 10: Quadratic Probing: Example
	Slide 11: Using Quadratic Probing
	Slide 12: Double Hashing: Insert Procedure
	Slide 13: Rehashing
	Slide 14: Sorting
	Slide 15: More Formal Definition
	Slide 16: Sorting “Landscape”
	Slide 17: “Moving Day” Sorting Algorithm
	Slide 18: Selection Sort
	Slide 19: Selection Sort
	Slide 20: Insertion Sort
	Slide 21: Insertion Sort
	Slide 22: Aside: Bubble Sort – we won’t cover it
	Slide 23: Heap Sort
	Slide 24: Heap Sort
	Slide 25: Heap Sort
	Slide 26: Heap Sort
	Slide 27: Heap Sort
	Slide 28: Heap Sort
	Slide 29: “In Place” Sorting Algorithm
	Slide 30: In Place Heap Sort
	Slide 31: Heap Sort
	Slide 32: Heap Sort
	Slide 33: Heap Sort
	Slide 34: Heap Sort
	Slide 35: Heap Sort
	Slide 36: Heap Sort
	Slide 37: In Place Heap Sort
	Slide 38: Floyd’s buildHeap method

