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Bank Account

Public static final Object BANK = new Object();
class BankAccount { 

… 
synchronized void withdraw(int amt) {…} 
synchronized void deposit(int amt) {…} 
synchronized void transferTo(int amt, BankAccount a) {

this.withdraw(amt);
a.deposit(amt);

}
} 



The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost
release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in 
LIFO order

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo
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Resolving Deadlocks

• Deadlocks occur when there are multiple locks necessary to complete a 
task and different threads may obtain them in a different order

• Option 1:
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2:
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked 

separately

• Option 3:
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit, 

make sure both threads agree on the order to aquire



Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount { 

… 

synchronized void withdraw(int amt) {…} 

synchronized void deposit(int amt) {…} 

void transferTo(int amt, BankAccount a) {

synchronized(BANK){

this.withdraw(amt); 

a.deposit(amt);

}

} 

} 



Option 2: Finer Critical Section

class BankAccount { 

… 

synchronized void withdraw(int amt) {…} 

synchronized void deposit(int amt) {…} 

void transferTo(int amt, BankAccount a) {

synchronized(this){

this.withdraw(amt); 

}

synchronized(a){

a.deposit(amt);

} 

} 

} 



Option 3: First Get All Locks In A Fixed Order
class BankAccount { 

… 

synchronized void withdraw(int amt) {…} 

synchronized void deposit(int amt) {…} 

void transferTo(int amt, BankAccount a) {

if (this.acctNum < a.acctNum){

synchronized(this){

synchronized(a){ 

this.withdraw(amt); 

a.deposit(amt);

} } }

else {

synchronized(a){

synchronized(this){ 

this.withdraw(amt); 

a.deposit(amt);

} } }

} 

} 



Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes 
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output: 
• Does the graph have a cycle?

• A topological sort of the graph.
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DFS (non-recursive)
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void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
  current = found.pop();
  for (v : neighbors(current)){
   if (! v marked “visited”){
    mark v as “visited”;
    found.push(v);
   }
  }
 } 
}   
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Running time: Θ 𝑉 + 𝐸



DFS Recursively (more common)
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Cycle Detection
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boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
  if (v marked “visited” && ! v marked “done”){
   cycleFound=true;
  }
  if (! v marked “visited” && !cycleFound){
   cycleFound = hasCycle(graph, v);
  }
 }
 mark curr as “done”;
 return cycleFound;
}   
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Idea: Look for a back edge!



Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a 
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the 
permutation

13

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8



DFS Recursively
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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DFS Recursively
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void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
  if (! v marked “visited”){
   dfs(graph, v);
  }
 }
 mark curr as “done”;
}   
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Idea: List in reverse 
order by “done” time



DFS: Topological sort
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List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
  if (!v.visited){
   finishTime(graph, v, finished);
  }
 }
 done.add(curr)
}   
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Idea: List in reverse 
order by “done” time



Definition: Tree
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A connected graph with no cycles
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Note: A tree does not need 
a root, but they often do!



Definition: Tree
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A connected graph with no cycles
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Definition: Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that 
doesn’t have any cycles is guaranteed 
to be a spanning tree!

Any set of V-1 edges that connects all 
the nodes in the graph is guaranteed to 
be a spanning tree!
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Definition: Minimum Spanning Tree
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A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”) 
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has 
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = ෍

𝑒∈𝐸𝑇

𝑤(𝑒)
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Kruskal’s Algorithm
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Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not 
create a cycle
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Definition: Cut
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A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the 
nodes into two sets,  𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a 
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆 
(or opposite), e.g. (𝐴, 𝐶) 

A set of edges 𝑅 Respects a cut 
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }



Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which 
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning 
tree.
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Proof of Kruskal’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of 
edges 𝐴 that Kruskal’s has already selected to 
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge 
Kruskal’s selects to add next

We know that there cannot exist a path from 
𝐹 to G using only edges in 𝐴 because 𝑒 does not 
cause a cycle

We can cut the graph therefore into 2 disjoint 
sets: 
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut, 
so by the Cut Theorem, Kruskal’s is optimal!



Kruskal’s Algorithm Runtime
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t 

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set 
data structure (very fancy)

𝑂 𝐸 log 𝑉
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General MST Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)



Prim’s Algorithm
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Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree



Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm

40

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Prim’s Algorithm
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Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node 
  in 𝐴 with a node not in 𝐴
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Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = current.distance + weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7



Prim’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return end.distance;
}
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Dijkstra’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = current.distance + weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return end.distance;
}
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Prim’s Algorithm
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int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start);  // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
  current = PQ.extractmin();
  if (current.known){ continue;}
  current.known = true;
  for (neighbor : current.neighbors){
   if (!neighbor.known){
    new_dist = weight(current,neighbor);
    if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
    else if (new_dist < neighbor. distance){
     neighbor. distance = new_dist;
     PQ.decreaseKey(new_dist,neighbor); }
   }
  }
 }
 return end.distance;
}
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