CSE 332 Autumn 2023
Lecture 26: Topological Sort and
Minimum Spanning Trees

Nathan Brunelle
http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Bank Account

Public static final Object BANK = new Object();
class BankAccount {

/ijnchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}

nchronized void transferTa(int amt, BankAccount a) {

—~this.withdraw(amt);

a.deposit(amt);

The Deadlock

Thread 1:

x.transferTo(1,y);

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

Thread 2:

LL.tﬂansferTo(l,x);

acquire lock for accou
acquire lock for accou
release lock for accou
release lock for aceou

c transferTo is synchronized
b/c deposit is synchronized
fter depost

t end of transferTo

acquire lock for accoun:
acquire lock for accou
release lock for accg
release lock for accou

c transferTo is synchronized
o/c deposit is synchronized
x_after deposit

@ nd of transferTo

ThHe Deadlock

Expected Behavior:
Thread 2 items from a stack are popped in

LIFO order
Thread 1: Thread 2:
x.transferTo(1,y); y.transferTo(1,x);
acquire lock for accouanJa/c transferTo is synchronized
acquire lock for account ransferTo is synchronized

acquire lock for ac@c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

acquire lock for account x b/¢ deposit is synchronized
release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks K

* Deadlocks occur when there arg multiple locks's
task and different threads may o emin a

eeassary to-eemplete a
* Option 1:

* Have a coarser lock granularity 7/
* E.g. one lock for ALL bank accounts

* Option 2:
* Have a finer critical section so that only one lock is needed at a time
* E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked
separately
* Option 3:
* (Force the threads tto always acquire the locks in the same order

* E.g. make transferTo acquire both locks before doing either the withdraw or deposit,
make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();
class BankAccount { /\\

synchronized void withdraw(int amt) {...}

synchronized void deposit(int amt) {...}

void transferTo(int amt, BankAccount a) {
synchronized(BANK){

) this.withdraw(amt);

a.deposit(amt);

Option 2:Finer Critical Section
\J
class BankAccount {

m withdraw(intamﬂ%

synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
synchronized(this){
this.withdraw(amt);

J _
ynchronized(@){ —

@ a.deposit(amt);
}

}

Option 3: First Get All Locks In A Fixed Order

class BankAccount {

synchronized void withdraw(int amt) {...}
synchronized void deposit(int amt) {...}
void transferTo(int amt, BankAccount a) {
is.acctNu ? acctNum!{
/ f ynchronized(this)
synchronized(a){

this.withdraw(amt);
a.deposit(amt);

1H}
else {
syrichronized(this){
W this.withdraw(amt);
a.deposit(amt);
1H}

Depth-First Search

* Input: anode s

* Behavior: Start with node s, visit one neighbor of s, then all nodes
reachable from that neighbor of s, then another neighbor of s,...

* Output:
e Does the graph have a cycle?
* A topological sort of the graph.

DFS (non-recursive)

O)
©
o @ o

3 & -

Running time: O(|V| + |E|)

void dfs(graph, s){

found = new Stack();
found.pop(s);
mark s as “visited”;
While (!found.isEmpty()){
current = found.pop();
for (v : neighbors(current)){
if (! v marked “visited”){
mark v as “visited”;
found.push(v);

10

DFS Recursively (more common)

void dfs@,@{

mark curr as “visited”;

for (v : neighbors(current)){
if (! v marked “visited”){

dfs(graph, v);
disigroph.

}
| O

mark curr as “done”;

ldea: Look for a back edge!

Cycle Detection

boolean hasCycle(graph, curr){
mark curr as “visited”;
cycleFound = false;
for (v : neighbors(current)){
@ @ ~ if (v marked “visited” && ! v marked “done”){
cycIeFo'qu=true;
} -
Q e if (! v marked “visited” && IcycleFound){
(3] cycleFound = hasCycle(graph, v);
O @ }
}
mark curr as “done”;
return cycleFound;

} 12

Topological Sort

* A Topological Sort of a directed acyclic graph G = (V,E) is a
permutation of V such that if (u, v) € E then u is before v in the
permutation

@

G e C /o
°@V\9@%\/° =9 y @"
o

13

DFS Recursively

void dfs(graph, curr){
mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){
dfs(graph, v);
}
}

mark curr as “done”;

DFS Recursively

Idea: List in reverse
void dfs(graph, curr){ order by “done” time

mark curr as “visited”;
for (v : neighbors(current)){
if (! v marked “visited”){

dfs(graph, v); © ©
}
} O o
mark curr as “done”;
y L— o

DFS: Topological sort YA Z:

List topSort(graph){
List<Nodes> done = new List<>();

for (Node v : graph.vertices){

if (v.visited){
inishTime(graph, v, finished);

ldea: List in reverse
order by “done” time

done.reverse();
return done; nished: | (S\ / Zf) i >
} :
don ¢ 7
void finishTime(graph, curr, finistred{— @)

curr.visited = true;
for (Node v : curr.neighbors){

if (Ivvisited){
finishTime(graph, v, finished);
o \>6

done.add(curr)

Definition: Tree

A chith no cycles

\

Note: A tree does not need

a root, but they often do!
Pt

17

Definition: Tree) — \

A connected graph with no cycles \% (’Z

Pick some arbitrary

root node and
rearrange tree

18

Definition: Spanning Tree

A Tree T = (V;, Et) which connects (“spans”)
E/ all the nodesina graph ¢ = (V,E)
—_— —

~

How many edges does T have?

> 9
\ /. o — 0 6 ©
e 3 Pick some arbitrary

6
11 root node and 1 G
1 G - @ rearrange tree G 3 Q

Any set of V-1 edges in the graph that Any set of V-1 edges that connects all

doesn’t have any cycles is guaranteed the nodes in the graph is guaranteed to
to be a spanning tree! be a spanning tree! 19

Definition: Minimum Spanning Tree

A Tree T = (V, E7) which connects (“spans”)
\ all the nodes in a graph ¢ = (V, E), that has
>/ minimal cost

O -0
10
J(7 8 H) ZV Cost(T) = Z w(e)

o o\l
@79@@ W2 N
50—

20

Kruskal’s Algorithm

\/4

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

21

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

10 A0,
7 H
09@ 592
©

12 3

3
11
61\66@

23

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

24

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

25

Kruskal’s Algorithm

Start with an empty tree A
Add to A the lowest-weight edge that does not
create a cycle

26

Kruskal’s Algorithm = }

Start with an empty tree A
Add to A the lowest-weight edge that does not

create a cycle
¥

27

Definition: Cut
A Cut of graph G = (V,E) is aw of the

nodes into two sets, S and(V — 5

(o

Edge (v,,v,) € E crosses a A set of edges R Respects a cut
cutifvpeSandv, eV —-3S if no edges cross the cut
(or opposite), e.g. (4, C) eg.R={(4,B) (EG)(F,G)} |,

Cut Theorem

If a set of edges%/ﬂis a subset of a minimum spanning tre@ let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which

“crosses (S,V — S)tig\\is also a subset of a minimum spanning

29

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S, V —
S) be any cut which A respects. Let e be the least-weight edge which
crosses (S,V —5). AU {e}is also a subset of a minimum spanning

tree.

10 O——0_,
7 @
0 9 Q 5)
S O
12 3
G i e 11
' G 6 30

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (S,V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

31

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

32

Cut Theorem

If a set of edges A is a subset of a minimum spanning tree T', let (5, V —
S) be any cut which A respects. Let ¢ be the least-weight edge which
crosses (5,V —S5). AU {e}is also a subset of a minimum spanning

tree.

33

Proof of Kruskal’s Algorithm

Start with an empty tree A
Repeat V' — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

<

Proof: Suppose we have some arbitrary set of
edge‘s A tﬁmat Kruskal’s has already selected to
include in the MST. e = (F, () is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
F to G using only edges in A because e does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:
* nodes reachable from G using edges in A

| All other node

e is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

34

Kruskal’s Algorithm Runtime

Start with an empty tree A
Repeat V — 1 times:
Add the min-weight edge that doesn’t
cause a cycle

Keep edges in a Disjoint-set
data structure (very fancy)
O(E logV)

35

(General MST/Algorithm

Start with an empty tree A

Repeat V' — 1 times: ——
P|ck ac gtC(S V — S) which A respects (typically implicitl
Add the min- welght edge which crosses (S,V — S)

36

Prim’s Algorithm

Start with an empty tree
Repeat V — 1 times:
Pick a cut (S5,V — §) which 4 respects
Add the min-weight edge which crosses (5,V —)

S is all endpoint of edges in
e is the min-weight edge that grows the

10 A0,

37

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

10 —0.

38

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

39

Prim’s Algorithm
Start with an empty tree A

Pick a start node

Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

40

Prim’s Algorithm
Start with an empty tree A

Pick a start node
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

\[
e

41

Prim’s Algorithm
Start with an empty tree A ¢ .
eep edges in a Heap

Pick a start node O(E log V)
Repeat V — 1 times:
Add the min-weight edge which connects to node
in A with a node notin A

42

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17 ;

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

Dijkstra’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start

start.distance = 0; 17 3
while (IPQ.isEmpty){ @ 3
current = PQ.extractmin();
if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){

if ('neighbor.known){
new_dist = current.distance + weight(current,neighbor);

if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

45

Prim’s Algorithm

int dijkstras(graph, start, end){ 7

PQ = new minheap(); Q 9
(3)

PQ.insert(0, start); // priority=0, value=start
start.distance = 0; 17
3

while (IPQ.isEmpty){ @ 3

current = PQ.extractmin();

if (current.known){ continue;} 1 @

current.known = true;
for (neighbor : current.neighbors){
if ('neighbor.known){
new_dist = weight(current,neighbor);
if(neighbor.dist != 00){ PQ.insert(new_dist, neighbor);}
else if (new_dist < neighbor. distance){
neighbor. distance = new_dist;
PQ.decreaseKey(new _dist,neighbor); }

}
}

return end.distance;

46

	Slide 1: CSE 332 Autumn 2023 Lecture 26: Topological Sort and Minimum Spanning Trees
	Slide 2: Bank Account
	Slide 3: The Deadlock
	Slide 4: The Deadlock
	Slide 5: Resolving Deadlocks
	Slide 6: Option 1: Coarser Locking
	Slide 7: Option 2: Finer Critical Section
	Slide 8: Option 3: First Get All Locks In A Fixed Order
	Slide 9: Depth-First Search
	Slide 10: DFS (non-recursive)
	Slide 11: DFS Recursively (more common)
	Slide 12: Cycle Detection
	Slide 13: Topological Sort
	Slide 14: DFS Recursively
	Slide 15: DFS Recursively
	Slide 16: DFS: Topological sort
	Slide 17: Definition: Tree
	Slide 18: Definition: Tree
	Slide 19: Definition: Spanning Tree
	Slide 20: Definition: Minimum Spanning Tree
	Slide 21: Kruskal’s Algorithm
	Slide 22
	Slide 23: Kruskal’s Algorithm
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Kruskal’s Algorithm
	Slide 28: Definition: Cut
	Slide 29: Cut Theorem
	Slide 30: Cut Theorem
	Slide 31: Cut Theorem
	Slide 32: Cut Theorem
	Slide 33: Cut Theorem
	Slide 34: Proof of Kruskal’s Algorithm
	Slide 35: Kruskal’s Algorithm Runtime
	Slide 36: General MST Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s Algorithm
	Slide 42: Prim’s Algorithm
	Slide 43: Dijkstra’s Algorithm
	Slide 44: Prim’s Algorithm
	Slide 45: Dijkstra’s Algorithm
	Slide 46: Prim’s Algorithm

