
CSE 332 Autumn 2023
Lecture 26: Topological Sort and

Minimum Spanning Trees
Nathan Brunelle

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Bank Account

Public static final Object BANK = new Object();
class BankAccount {

…
synchronized void withdraw(int amt) {…}
synchronized void deposit(int amt) {…}
synchronized void transferTo(int amt, BankAccount a) {

this.withdraw(amt);
a.deposit(amt);

}
}

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized
acquire lock for account y b/c deposit is synchronized
release lock for account y after depost
release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized
acquire lock for account x b/c deposit is synchronized
release lock for account x after deposit
release lock for account y at end of transferTo

The Deadlock

x.transferTo(1,y);

Thread 1:

y.transferTo(1,x);

Thread 2:

acquire lock for account x b/c transferTo is synchronized

acquire lock for account y b/c deposit is synchronized

release lock for account y after depost

release lock for account x at end of transferTo

Expected Behavior:
Thread 2 items from a stack are popped in
LIFO order

acquire lock for account y b/c transferTo is synchronized

acquire lock for account x b/c deposit is synchronized

release lock for account x after deposit

release lock for account y at end of transferTo

Resolving Deadlocks

• Deadlocks occur when there are multiple locks necessary to complete a
task and different threads may obtain them in a different order

• Option 1:
• Have a coarser lock granularity
• E.g. one lock for ALL bank accounts

• Option 2:
• Have a finer critical section so that only one lock is needed at a time
• E.g. instead of a synchronized transferTo, have the withdraw and deposit steps locked

separately

• Option 3:
• Force the threads to always acquire the locks in the same order
• E.g. make transferTo acquire both locks before doing either the withdraw or deposit,

make sure both threads agree on the order to aquire

Option 1: Coarser Locking

static final Object BANK = new Object();

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

void transferTo(int amt, BankAccount a) {

synchronized(BANK){

this.withdraw(amt);

a.deposit(amt);

}

}

}

Option 2: Finer Critical Section

class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

void transferTo(int amt, BankAccount a) {

synchronized(this){

this.withdraw(amt);

}

synchronized(a){

a.deposit(amt);

}

}

}

Option 3: First Get All Locks In A Fixed Order
class BankAccount {

…

synchronized void withdraw(int amt) {…}

synchronized void deposit(int amt) {…}

void transferTo(int amt, BankAccount a) {

if (this.acctNum < a.acctNum){

synchronized(this){

synchronized(a){

this.withdraw(amt);

a.deposit(amt);

} } }

else {

synchronized(a){

synchronized(this){

this.withdraw(amt);

a.deposit(amt);

} } }

}

}

Depth-First Search

• Input: a node 𝑠

• Behavior: Start with node 𝑠, visit one neighbor of 𝑠, then all nodes
reachable from that neighbor of 𝑠, then another neighbor of 𝑠,…

• Output:
• Does the graph have a cycle?

• A topological sort of the graph.

9

0

1 2

3

4

5

61

2

3

4

5

6
7

9

8

7

DFS (non-recursive)

10

void dfs(graph, s){
 found = new Stack();
 found.pop(s);
 mark s as “visited”;
 While (!found.isEmpty()){
 current = found.pop();
 for (v : neighbors(current)){
 if (! v marked “visited”){
 mark v as “visited”;
 found.push(v);
 }
 }
 }
}

1

2

3

4

5

6
7

9

8

Running time: Θ 𝑉 + 𝐸

DFS Recursively (more common)

11

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Cycle Detection

12

boolean hasCycle(graph, curr){
 mark curr as “visited”;
 cycleFound = false;
 for (v : neighbors(current)){
 if (v marked “visited” && ! v marked “done”){
 cycleFound=true;
 }
 if (! v marked “visited” && !cycleFound){
 cycleFound = hasCycle(graph, v);
 }
 }
 mark curr as “done”;
 return cycleFound;
}

1

2

3

4

5

6
7

9

8

Idea: Look for a back edge!

Topological Sort

• A Topological Sort of a directed acyclic graph 𝑮 = (𝑽, 𝑬) is a
permutation of 𝑉 such that if 𝑢, 𝑣 ∈ 𝐸 then 𝑢 is before 𝑣 in the
permutation

13

1

2

3

4

5

6
7

9

8

1 23 4 56 79 8

DFS Recursively

14

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

DFS Recursively

15

void dfs(graph, curr){
 mark curr as “visited”;
 for (v : neighbors(current)){
 if (! v marked “visited”){
 dfs(graph, v);
 }
 }
 mark curr as “done”;
}

1

2

3

4

5

6
7

9

8

Idea: List in reverse
order by “done” time

DFS: Topological sort

16

List topSort(graph){
 List<Nodes> done = new List<>();
 for (Node v : graph.vertices){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.reverse();
 return done;
}

void finishTime(graph, curr, finished){
 curr.visited = true;
 for (Node v : curr.neighbors){
 if (!v.visited){
 finishTime(graph, v, finished);
 }
 }
 done.add(curr)
}

1

2

3

4

5

6
7

9

8

finished:

Idea: List in reverse
order by “done” time

Definition: Tree

17

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Note: A tree does not need
a root, but they often do!

Definition: Tree

18

A connected graph with no cycles

10

11

95

3

7

312

A

B

C

D

E

F
G

I

H

Pick some arbitrary
root node and
rearrange tree 10

11

9

5

3

73

12

A

B

C

D

EF

G

IH

Definition: Spanning Tree

19

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸)

How many edges does 𝑇 have?

𝑉 − 1

Any set of V-1 edges in the graph that
doesn’t have any cycles is guaranteed
to be a spanning tree!

Any set of V-1 edges that connects all
the nodes in the graph is guaranteed to
be a spanning tree!

10
2

6

5

8

3

1

8

A

B

C D

E

F

G I

H

Pick some arbitrary
root node and
rearrange tree

Definition: Minimum Spanning Tree

20

A Tree 𝑻 = (𝑉𝑇 , 𝐸𝑇) which connects (“spans”)
all the nodes in a graph 𝐺 = (𝑉, 𝐸), that has
minimal cost

𝐶𝑜𝑠𝑡 𝑇 = ෍

𝑒∈𝐸𝑇

𝑤(𝑒)

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

21

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

23

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

24

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

25

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

26

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Kruskal’s Algorithm

27

Start with an empty tree 𝐴
Add to 𝐴 the lowest-weight edge that does not
create a cycle

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Definition: Cut

28

A Cut of graph 𝐺 = (𝑉, 𝐸) is a partition of the
nodes into two sets, 𝑆 and 𝑉 − 𝑆

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

𝑆

Edge 𝑣1, 𝑣2 ∈ 𝐸 crosses a
cut if 𝑣1 ∈ 𝑆 and 𝑣2 ∈ 𝑉 − 𝑆
(or opposite), e.g. (𝐴, 𝐶)

A set of edges 𝑅 Respects a cut
if no edges cross the cut
e.g. 𝑅 = { 𝐴, 𝐵 , 𝐸, 𝐺 , 𝐹, 𝐺 }

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

29

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

30

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

31

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

32

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Cut Theorem

If a set of edges 𝐴 is a subset of a minimum spanning tree 𝑇, let (𝑆, 𝑉 −
𝑆) be any cut which 𝐴 respects. Let 𝑒 be the least-weight edge which
crosses (𝑆, 𝑉 − 𝑆). 𝐴 ∪ {𝑒} is also a subset of a minimum spanning
tree.

33

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Proof of Kruskal’s Algorithm

34

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t
 cause a cycle

𝑆

𝑒

Proof: Suppose we have some arbitrary set of
edges 𝐴 that Kruskal’s has already selected to
include in the MST. 𝑒 = (𝐹, 𝐺) is the edge
Kruskal’s selects to add next

We know that there cannot exist a path from
𝐹 to G using only edges in 𝐴 because 𝑒 does not
cause a cycle

We can cut the graph therefore into 2 disjoint
sets:
• nodes reachable from G using edges in 𝐴
• All other nodes

𝑒 is the minimum cost edge that crosses this cut,
so by the Cut Theorem, Kruskal’s is optimal!

Kruskal’s Algorithm Runtime

35

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Add the min-weight edge that doesn’t

 cause a cycle

𝑆

𝑒

Keep edges in a Disjoint-set
data structure (very fancy)

𝑂 𝐸 log 𝑉

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

General MST Algorithm

36

10

2

6

11

95

8

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects (typically implicitly)
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

Prim’s Algorithm

37

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Start with an empty tree 𝐴
Repeat 𝑉 − 1 times:
 Pick a cut (𝑆, 𝑉 − 𝑆) which 𝐴 respects
 Add the min-weight edge which crosses (𝑆, 𝑉 − 𝑆)

𝑆 is all endpoint of edges in 𝐴
𝑒 is the min-weight edge that grows the tree

Prim’s Algorithm

38

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

39

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

40

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

41

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Prim’s Algorithm

42

Keep edges in a Heap
𝑂 𝐸 log 𝑉

Start with an empty tree 𝐴
Pick a start node
Repeat 𝑉 − 1 times:
 Add the min-weight edge which connects to node
 in 𝐴 with a node not in 𝐴

10

2

7

11

95

6

3

7

3

1

8

12

9A

B

C

D

E

F
G

I

H

Dijkstra’s Algorithm

43

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = current.distance + weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Prim’s Algorithm

44

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Dijkstra’s Algorithm

45

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = current.distance + weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

Prim’s Algorithm

46

int dijkstras(graph, start, end){
 PQ = new minheap();
 PQ.insert(0, start); // priority=0, value=start
 start.distance = 0;
 while (!PQ.isEmpty){
 current = PQ.extractmin();
 if (current.known){ continue;}
 current.known = true;
 for (neighbor : current.neighbors){
 if (!neighbor.known){
 new_dist = weight(current,neighbor);
 if(neighbor.dist != ∞){ PQ.insert(new_dist, neighbor);}
 else if (new_dist < neighbor. distance){
 neighbor. distance = new_dist;
 PQ.decreaseKey(new_dist,neighbor); }
 }
 }
 }
 return end.distance;
}

10

2

7

11

95

6

3

7

3

1

8

12

90

1

2

3

4

5
6

8

7

	Slide 1: CSE 332 Autumn 2023 Lecture 26: Topological Sort and Minimum Spanning Trees
	Slide 2: Bank Account
	Slide 3: The Deadlock
	Slide 4: The Deadlock
	Slide 5: Resolving Deadlocks
	Slide 6: Option 1: Coarser Locking
	Slide 7: Option 2: Finer Critical Section
	Slide 8: Option 3: First Get All Locks In A Fixed Order
	Slide 9: Depth-First Search
	Slide 10: DFS (non-recursive)
	Slide 11: DFS Recursively (more common)
	Slide 12: Cycle Detection
	Slide 13: Topological Sort
	Slide 14: DFS Recursively
	Slide 15: DFS Recursively
	Slide 16: DFS: Topological sort
	Slide 17: Definition: Tree
	Slide 18: Definition: Tree
	Slide 19: Definition: Spanning Tree
	Slide 20: Definition: Minimum Spanning Tree
	Slide 21: Kruskal’s Algorithm
	Slide 22
	Slide 23: Kruskal’s Algorithm
	Slide 24: Kruskal’s Algorithm
	Slide 25: Kruskal’s Algorithm
	Slide 26: Kruskal’s Algorithm
	Slide 27: Kruskal’s Algorithm
	Slide 28: Definition: Cut
	Slide 29: Cut Theorem
	Slide 30: Cut Theorem
	Slide 31: Cut Theorem
	Slide 32: Cut Theorem
	Slide 33: Cut Theorem
	Slide 34: Proof of Kruskal’s Algorithm
	Slide 35: Kruskal’s Algorithm Runtime
	Slide 36: General MST Algorithm
	Slide 37: Prim’s Algorithm
	Slide 38: Prim’s Algorithm
	Slide 39: Prim’s Algorithm
	Slide 40: Prim’s Algorithm
	Slide 41: Prim’s Algorithm
	Slide 42: Prim’s Algorithm
	Slide 43: Dijkstra’s Algorithm
	Slide 44: Prim’s Algorithm
	Slide 45: Dijkstra’s Algorithm
	Slide 46: Prim’s Algorithm

