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Pichonary (Map) ADT /\L /7
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* Contents: /
 Sets of key+value pairs

* Keys must be comparable

* Operations: &
* insert(key,value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value e

* Consequence: Keys cannot be repeated

j find(key)

* Returns the value associated with the given key

o .delete(key)
/  Remove the key (and its associated value)




Less Nalve attempts

* Binary Search Trees (Friday)

* Tries (Project)

* AVL Trees (Today)

* B-Trees (this week)

* HashTables (next week)

* Red-Black Trees (not included in this course)
* Splay Trees (not included in this course)



Dictionary Data Structures

Data Structure Time tec insert | Time to find Time to delete
Unsorted Array @ O(n) )

Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)

AVL Tree O(logn) O(logn) ® (171\1)




Binary Search Tree (3 ‘@

* Binary Tree 0 G Q Q‘
* Definition:
* Every node has at most 2 childre ° g

e Order Property
* All keys in the left subtree are smaller than the root

* All keys in the right subtree are larger than the root
* Apply recursively

* Makes searching quicker
- O

Worst case: tree’s height




-

Find Operation (recursive) S

find(key, root){
if (root == Null){

return Null;

{

if (key == root.key){ "
return root.value;

}

if (key < root.key){
return find(key, root.left);

}
if (key > root.key){

return find(key, root.right);
}

return Null;



Find Operation (iterative)

find(key, root){
while (root != Null && key !=root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;



)
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Insert Operation (iterative) # /%’ ‘

insert(key, value, root){ /
if (root == Null){ this.root = new Node(key, value); }
parent = Null;
while (root != Null && key != root.key){

parent = root;

if (key < root.key){ root = root.left; }

else if (key > root.key){ root = root.right; }
}

if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); } (\l

} Note: Insert happens only at the leaves!






Delete Operation (iterative)) a@

delete(key, root){

while (root != Null && key != root.key){ G ( e
if (key < root.key){ root = root.left; ° ° 0

else if (key > root.key){ root = root.right; }

}
if (root == Null){ return; }

// Now root is the node to delete, what happens next?



Delete — 3 Cases
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Finding the Max and Min

maxNode(root){
e Max of a BST: if (root == Null){ return Null; }
. . while (root.right != Null){
* Right-most Thing root = root.right; °
}

return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left |= Null){
root = root.left;

}

return root;



Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } 0
else if (key > root.key){ root = root.right; }

} O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right



Improving the worst case

* How can we get a better worst case running time?



“Balanced” Binary Search Trees

* We get better running times by having “shorter” trees
* Trees get tall due to them being “sparse” (many one-child nodes)
* |dea: modify how we insert/delete to keep the tree more “full”



dea 1: Both Subtrees of Root have same
Nodes
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dea 2: Both Subtrees of Root have same
neight




|[dea 3: Both Subtrees of every N Node have

same # Nodes —
k/§<_,
g \QK



|dea 4: Both Subtrees of every Node have

same@g\h': /
()




AVL Tree
)

* A|Binary Search tree that maintains that theaifta/ndright subtrees of
every node have heights that differ by at most one.
* height of left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)

* Not too strong (works for any number of nodes)
e

~

e |dea of AVL Tree:

* When you insert/delete nodes, if tree is “out of balance” then modify the tree
* Modification = “rotation”






Using AVL Trees

Key =9 \K
Value = “hello”

Height =3

 Each node has:

* Key Left = Node 3
e Value Right = Node 10
* Height \

+ Left child > °

* Right child -



mS@LQrE)IntO an AVL Tree

 Starts out the same way as BST:
* “Find” where the new node should go
e Putitin the right place (it will be a leaf)

 Next check the balance —

L ———
* If the tree is stjll balanced;, you’re done!

°L0thﬂise we need to do rotations




Insert Example




Insert Exampf@/éi %
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Not Balanced!

Solution: rotate the whole tree to the right







Balanced!



Right Rotation
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h+1

Right
Rotation




Insert Example




Not Balanced!

Solution: rotate the deepest imbalance to the left

e Height = 3
OO e

Height =0 @ < — /\QQ<

@ 2 o




Balanced!



Left Rotation

* Make the right child the new root
* Make the old root the left child of the new

* Make the new root’s left subtree the old root’s right subtree

h+3

h+ 2

h+1

Left
Rotation




Insertion Story So Far

» After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance

* If the left subtree was deeper then rotate right This is incomplete!

i Th
* If the right subtree was deeper then rotate left Wheerfeatﬁssg?eir‘:atsfvzrkl

= = -




Insertion Story So Far

» After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then rotate right
* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???
e Case RL: If we inserted into the left subtree of the right child then ?7??

Cases LR and RL require 2
rotations!



Case LR

* From “root” of the deepest imbalance:

* Rotate left at the left child
* Rotate right at the root

Rotate Left
a at5

Rotate

Right at 9

©



Case LR in General

* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child

* Rotate right at the imbalanced node
h+3

Rotate
Right at

Rotate
Left at




Case RL in General

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

 Rotate left at the imbalanced node
h+3

Rotate Rotate
Right at Left at




Insert Summary

e After a BST insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left
at the left child and then rotate right at the root

* Case RL: If we inserted into the left subtree of the right child then: rotate
right at the right child and then rotate left at the root
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