CSE 332 Winter 2024

Lecture 8:/AVL Trees
Nathan BrunelleN

http://www.cs.uw.edu/332

http://www.cs.uw.edu/332

Pichonary (Map) ADT /\L /7
—J 4 -

* Contents: /
 Sets of key+value pairs

* Keys must be comparable

* Operations: &
* insert(key,value)
* Adds the (key,value) pair into the dictionary

 If the key already has a value, overwrite the old value e

* Consequence: Keys cannot be repeated

j find(key)

* Returns the value associated with the given key

o .delete(key)
/ Remove the key (and its associated value)

Less Nalve attempts

* Binary Search Trees (Friday)

* Tries (Project)

* AVL Trees (Today)

* B-Trees (this week)

* HashTables (next week)

* Red-Black Trees (not included in this course)
* Splay Trees (not included in this course)

Dictionary Data Structures

Data Structure Time tec insert | Time to find Time to delete
Unsorted Array @ O(n))

Unsorted Linked List O(n) O(n) O(n)
Sorted Array O(n) O(logn) O(n)
Sorted Linked List O(n) O(n) O(n)
Binary Search Tree O(n) O(n) O(n)

AVL Tree O(logn) O(logn) ® (171\1)

Binary Search Tree (3 ‘@

* Binary Tree 0 G Q Q‘
* Definition:
* Every node has at most 2 childre ° g

e Order Property
* All keys in the left subtree are smaller than the root

* All keys in the right subtree are larger than the root
* Apply recursively

* Makes searching quicker
- O

Worst case: tree’s height

-

Find Operation (recursive) S

find(key, root){
if (root == Null){

return Null;

{

if (key == root.key){ "
return root.value;

}

if (key < root.key){
return find(key, root.left);

}
if (key > root.key){

return find(key, root.right);
}

return Null;

Find Operation (iterative)

find(key, root){
while (root != Null && key !=root.key){
if (key < root.key){
root = root.left;

}
else if (key > root.key){

root = root.right;

}
}
if (root == Null){
return Null;
}

return root.value;

)

[7 oy
Insert Operation (iterative) # /%’ ‘

insert(key, value, root){ /
if (root == Null){ this.root = new Node(key, value); }
parent = Null;
while (root != Null && key != root.key){

parent = root;

if (key < root.key){ root = root.left; }

else if (key > root.key){ root = root.right; }
}

if (root != Null){ root.value = value; }
else if (key < parent.key){ parent.left = new Node(key, value); }
else{ parent.right = new Node (key, value); } (\l

} Note: Insert happens only at the leaves!

Delete Operation (iterative)) a@

delete(key, root){

while (root != Null && key != root.key){ G (e
if (key < root.key){ root = root.left; ° ° 0

else if (key > root.key){ root = root.right; }

}
if (root == Null){ return; }

// Now root is the node to delete, what happens next?

Delete — 3 Cases

. ildren Aan - | |
2 Children) v G4 /Q/
K(/O/M(é Aofp

A4S S [o6~ ya

Finding the Max and Min

maxNode(root){
e Max of a BST: if (root == Null){ return Null; }
. . while (root.right != Null){
* Right-most Thing root = root.right; °
}

return root;

* Min of a BST:
* Left-most Thing

minNode(root){
if (root == Null){ return Null; }
while (root.left |= Null){
root = root.left;

}

return root;

Delete Operation (iterative)

delete(key, root){

while (root != Null && key != root.key){
if (key < root.key){ root = root.left; } 0
else if (key > root.key){ root = root.right; }

} O

if (root == Null){ return; }

if (root has no children){
make parent point to Null Instead;

}

if (root has one child){
make parent point to that child instead;

}

if (root has two children){
make parent point to either the max from the left or min from the right

Improving the worst case

* How can we get a better worst case running time?

“Balanced” Binary Search Trees

* We get better running times by having “shorter” trees
* Trees get tall due to them being “sparse” (many one-child nodes)
* |dea: modify how we insert/delete to keep the tree more “full”

dea 1: Both Subtrees of Root have same
Nodes

@f /\) /(/\
\c)
@\\J
X X

dea 2: Both Subtrees of Root have same
neight

|[dea 3: Both Subtrees of every N Node have

same # Nodes —
k/§<_,
g \QK

|dea 4: Both Subtrees of every Node have

same@g\h': /
()

AVL Tree
)

* A|Binary Search tree that maintains that theaifta/ndright subtrees of
every node have heights that differ by at most one.
* height of left subtree and height of right subtree off by at most 1
* Not too weak (ensures trees are short)

* Not too strong (works for any number of nodes)
e

~

e |dea of AVL Tree:

* When you insert/delete nodes, if tree is “out of balance” then modify the tree
* Modification = “rotation”

Using AVL Trees

Key =9 \K
Value = “hello”

Height =3

 Each node has:

* Key Left = Node 3
e Value Right = Node 10
* Height \

+ Left child > °

* Right child -

mS@LQrE)IntO an AVL Tree

 Starts out the same way as BST:
* “Find” where the new node should go
e Putitin the right place (it will be a leaf)

 Next check the balance —

L ———
* If the tree is stjll balanced;, you’re done!

°L0thﬂise we need to do rotations

Insert Example

Insert Exampf@/éi %
O

S

Not Balanced!

Solution: rotate the whole tree to the right

Balanced!

Right Rotation

* Ma
* Ma
* Ma

Ke t
e t

Ke t

h+3 ——————— h+2

<C£C/{¢%9/7§ %;/‘/%7//4 (¢

V%,/ I i) é%/ﬁbﬂz

ne left child the new r

_/

ne old root the right child of the new

he new root’s right subtree the old root’s left subtree

h+1

Right
Rotation

Insert Example

Not Balanced!

Solution: rotate the deepest imbalance to the left

e Height = 3
OO e

Height =0 @ < — /\QQ<

@ 2 o

Balanced!

Left Rotation

* Make the right child the new root
* Make the old root the left child of the new

* Make the new root’s left subtree the old root’s right subtree

h+3

h+ 2

h+1

Left
Rotation

Insertion Story So Far

» After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance

* If the left subtree was deeper then rotate right This is incomplete!

i Th
* If the right subtree was deeper then rotate left Wheerfeatﬁssg?eir‘:atsfvzrkl

= = -

Insertion Story So Far

» After insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then rotate right
* Case RR: If we inserted in the right subtree of the right child then rotate left
* Case LR: If we inserted into the right subtree of the left child then ???
e Case RL: If we inserted into the left subtree of the right child then ?7??

Cases LR and RL require 2
rotations!

Case LR

* From “root” of the deepest imbalance:

* Rotate left at the left child
* Rotate right at the root

Rotate Left
a at5

Rotate

Right at 9

©

Case LR in General

* Imbalance caused by inserting in the left child’s right subtree
* Rotate left at the left child

* Rotate right at the imbalanced node
h+3

Rotate
Right at

Rotate
Left at

Case RL in General

* Imbalance caused by inserting in the right child’s left subtree
* Rotate right at the right child

 Rotate left at the imbalanced node
h+3

Rotate Rotate
Right at Left at

Insert Summary

e After a BST insertion, update the heights of the node’s ancestors
* Check for imbalance

* If there’s imbalance then at the deepest root of imbalance:
e Case LL: If we inserted in the left subtree of the left child then: rotate right
e Case RR: If we inserted in the right subtree of the right child then: rotate left

* Case LR: If we inserted into the right subtree of the left child then: rotate left
at the left child and then rotate right at the root

* Case RL: If we inserted into the left subtree of the right child then: rotate
right at the right child and then rotate left at the root

	Slide 1: CSE 332 Winter 2024 Lecture 8: AVL Trees
	Slide 2: Dictionary (Map) ADT
	Slide 3: Less Naïve attempts
	Slide 4: Dictionary Data Structures
	Slide 5: Binary Search Tree
	Slide 6: Find Operation (recursive)
	Slide 7: Find Operation (iterative)
	Slide 8: Insert Operation (iterative)
	Slide 9
	Slide 10: Delete Operation (iterative)
	Slide 11: Delete – 3 Cases
	Slide 12: Finding the Max and Min
	Slide 13: Delete Operation (iterative)
	Slide 14: Improving the worst case
	Slide 15: “Balanced” Binary Search Trees
	Slide 16: Idea 1: Both Subtrees of Root have same # Nodes
	Slide 17: Idea 2: Both Subtrees of Root have same height
	Slide 18: Idea 3: Both Subtrees of every Node have same # Nodes
	Slide 19: Idea 4: Both Subtrees of every Node have same height
	Slide 20: AVL Tree
	Slide 21: Is it an AVL Tree?
	Slide 22: Using AVL Trees
	Slide 23: Inserting into an AVL Tree
	Slide 24: Insert Example
	Slide 25: Insert Example
	Slide 26: Not Balanced!
	Slide 27
	Slide 28: Balanced!
	Slide 29: Right Rotation
	Slide 30: Insert Example
	Slide 31: Not Balanced!
	Slide 32: Balanced!
	Slide 33: Left Rotation
	Slide 34: Insertion Story So Far
	Slide 35: Insertion Story So Far
	Slide 36: Case LR
	Slide 37: Case LR in General
	Slide 38: Case RL in General
	Slide 39: Insert Summary

