
Craig Chambers 100 CSE 341

Squeak, a Smalltalk system

Smalltalk: the first pure OO language

• all data structures and values are objects

• all operations are methods invoked by message passing

• uniform reference data model, with garbage collection

• strongly, dynamically typed

Includes first-class function objects (blocks)

Includes rich standard data structure & graphics libraries

Includes interactive graphical programming environment

“Interesting” syntax...

Squeak: a current, actively growing Smalltalk system

Craig Chambers 101 CSE 341

Smalltalk syntax

An expression is one of:

• a literal

• an integer: 17

• a float: 3.5

• a string: ’a string’

• a character: $a

• a symbol: #abc

• an array: #(17 $a ’hi there’ () abc)

• a variable

• an instance variable: xyz

• a class or global variable: Xyz

• a pseudo-variable: true , false , nil , self , super

• a variable assignment

• xyz := expr

• can type _ (which prints as ←) instead of :=

• a message send...

• a block...

Comments in double quotes: "this is a comment"

Craig Chambers 102 CSE 341

Message syntax

Smalltalk uses three message syntaxes

• a postfix unary message: 17 negated

• an infix binary message: 17 + 18

• a keyword message: 17 foo: 18 bar: 19
(effect is like (foo:bar:)(17, 18, 19))

Parsing rules:

If one or two punctuation symbols (+, <=, &&),
interpret as a binary message

• receiver to the left, argument to the right of the msg name

Else if word does not end in a colon,
interpret as a variable reference (if no receiver)
or a unary message to the receiver expression on its left

Otherwise, interpret as (part of) a keyword message

• receiver of keyword before first keyword part

• one additional argument to message after each keyword

• keep adding keywords together until end of statement
to form one big multi-argument message

Craig Chambers 103 CSE 341

Precedence

Unaries have highest precedence, then binaries, then keywords

Example:

17 foo + 18 bar frob: 19 + ’asd’ zappo flim: 6.3

Craig Chambers 104 CSE 341

Associativity

Unaries are left associative (they have to be):

17 foo baz bar + bop quib droob

Binaries are left associative (always, possibly violating math):

3 + 4 * 5 / 6 ** 7 ** 8

Keywords don’t matter; only one per statement if no parens:

18 foo: 19 bar: (20 frob: 21) biz: 22

Craig Chambers 105 CSE 341

Methods

Example:

frob: foo diz: bar

 | bloop blop |

 bloop := foo dwizzle.

 blop := bar * self blip: dwaddle.

 ^ bloop + blop

Craig Chambers 106 CSE 341

Blocks

Blocks are like fn in ML:
anonymous, lexically-scoped function objects

All control structures take blocks as arguments

Users can define their own control structures
which take blocks as arguments

Examples:

[’hi there’]

[:item1 :item2 | item1 print. item2 print.]

[self initialize. ^ ’done’]

Craig Chambers 107 CSE 341

Control structures in Smalltalk

Conditionals

test ifTrue: [true part]
 ifFalse: [false part]

While loops

[test] whileTrue: [body]

[test] whileFalse: [body]

For loops

number timesRepeat: [body]

start to: end do: [: i | body]

start to: end by: step do: [: i | body]

General iteration

collection do: [: elem | body]

collection collect: [: elem | expr]

collection select: [: elem | test]

collection inject: init
 into: [: val : elem | expr]

Craig Chambers 108 CSE 341

Block semantics

Evaluating a block literal returns a new block object

Blocks are lexically-scoped:

• variable references search the enclosing method to find a
binding

• self is bound to the receiver of the lexically-enclosing
method (not the block as you might expect)

Unlike methods, blocks without ^ return the result of their last
expression

Craig Chambers 109 CSE 341

Non-local returns

If a block’s last statement is prefixed with a ^ ,
the block does a non-local return

The block does not return to its caller

Instead, it returns to the caller of the lexically-enclosing method

Example:

safeSqrt: x
 x <= 0 ifTrue: [^ 0].
 ^ x sqrt

^ acts like a return statement in other languages

Craig Chambers 110 CSE 341

Invoking a block

If a block takes no arguments, invoke it by sending value :

[’hi there’ print] value

If a block takes one argument, invoke it by sending value: :

[:msg | msg print] value: ’hi there’

If a block takes two arguments, invoke it by sending
value:with: :

[:msg1 :msg2 | msg1 print. msg2 print]
 value: ’hi’ with: ’ there’

If a block takes N arguments, invoke it by sending

value:{with:} N-1 :

[:msg1 :msg2 :msg3 :msg4 |
 msg1 print. msg2 print.
 msg3 print. msg4 print.]

value: ’hi’ with: ’ ’ with: ’the’ with: ’re’

