
Craig Chambers 146 CSE 341

Static typechecking of OO programs

Can use a subclass where a superclass is expected

• how to do typechecking when types don’t have to be the
same?

Want to make sure that method lookup finds a target method

• how to ensure no doesNotUnderstand errors?

Smalltalk doesn’t do static typechecking

+ flexible

− can have doesNotUnderstand errors at run-time

− can be harder to understand code,
since no interfaces specified

Java and C++ do static typechecking
(Java strongly, C++ weakly)

+ ensures no doesNotUnderstand errors before run-time

+ interfaces documented

− less flexible, more programmer burden

Craig Chambers 147 CSE 341

Subtyping

A key notion is subtyping :
one type A is a subtype of another type B if
values of type A can be used wherever values of type B are
expected

Each class defines a type

Then, a subclass is a subtype of its superclass(es),
since instances of the subclass can be used wherever
instances of the superclass are expected

POINT3D p3d = ...;
POINT p = p3d; // OK

POINT q = ...;
POINT3D q3d = q; // NOT OK: static type error
POINT3D r3d = (POINT3D)q; // OK statically,

// but verified by run-time check

Rectangle r1 = q; // NOT OK: static type error
Rectangle r2 = (Rectangle)q; // STILL NOT OK
int i = (int)q; // STILL NOT OK

Craig Chambers 148 CSE 341

Subtyping and method calls

Previous slide: rhs of assignment can be subtype of lhs

Also:

• arguments of method calls can be subtypes of
the method’s declared arguments

• declared result of method call can be subtype of what’s
expected by context (as with any expression)

public interface POINT {
...
public boolean equals(POINT p);

};

POINT3D p = ...;
POINT3D q = ...;

... p.equals(q) ... // OK, since q’s type subtypes
// equals ’s declared argument type

POINT r = p.add(q); // OK, since add ’s declared result
// type subtypes lhs type

Craig Chambers 149 CSE 341

Subtyping and method overriding vs. overloading

A rule:
when overriding a method in a subclass,
can’t change the argument types

• if you do, then you’re only overloading

Example:

POINT add(POINT p) // inherited from Point
POINT3D add(POINT3D p) // in CartPoint3D

are only statically overloaded , not dynamically overriding

• a call with a POINT argument won’t ever invoke the
add(POINT3D) method, even if the receiver is a
CartPoint3D

Otherwise, things could go very wrong:

POINT3D p = new CartPoint3D(3,4,5);

POINT q = new CartPoint(3,4);

p.add(q); // invokes add(POINT) inherited from Point ;
// what if it invoked add(POINT3D) instead?

Craig Chambers 150 CSE 341

Subtyping and method overriding and results

Another rule:
an overriding method can change its result type to be a
subtype of that of the overridden method

Example:

public abstract class Point implements POINT {
...
public POINT copy() {

return new CartPoint(x(), y());
};

};

public abstract class Point3D
extends Point implements POINT3D {

...
public POINT3D copy() {

return new CartPoint3D(x(), y(), z());
};

};

POINT3D p = new CartPoint3D(3,4,5);

POINT3D q = p.copy(); // OK

POINT r = p;

POINT s = r.copy(); // OK; s will be a CartPoint3D

Craig Chambers 151 CSE 341

Static typechecking of abstract vs. concrete classes

If a class is abstract, then can’t do new on it

... new POINT(...) ... // NOT OK

... new Point(...) ... // NOT OK

... new CartPoint(...) ... // OK

If a class is concrete, then must ensure that all operations are
implemented, either in this class or in a superclass

• must override all interface methods and abstract methods
with real implementations

public interface POINT3D extends POINT {
public int z();
public POINT3D add(POINT3D p);

};

public abstract class Point3D
extends Point implements POINT3D {

public abstract int z();
public POINT3D add(POINT3D p) { ... };
public String toString() { ... };

};

public class CartPoint3D
extends CartPoint implements POINT3D {

// what must be implemented?

};

