
CSE 341, Winter 2003

1

CSE 341, Winter 2003 1

CSE 341: Programming Languages

� The Team:
� Alan Borning, instructor
� Andrei Alexandrescu, teaching assistant
� Eric Bessette, teaching assistant

� �It�s on the Web�
� www.cs.washington.edu/341

� Add yourself to the class listserv
� Directions are on the class web page

CSE 341, Winter 2003 2

Course topics

� Three languages:
� Java
� Scheme (like Lisp � lots-o-parentheses)
� Haskell (a pure functional language with an 

interesting type system)

� General programming language concepts
� Maybe:

� perl
� squeak
� CLP(R) (constraint logic programming)

CSE 341, Winter 2003 3

Required work

� Warmup and moderate-sized program in each 
language

� Course project of your own choosing
� Probably in Java, but we�re willing to discuss doing 

projects in another language
� Can be done in groups
� Eclipse and cvs recommended for Java group projects

� Midterm, final
� Some written homework

CSE 341, Winter 2003 4

Books

� Required text:
� Allen Tucker and Robert Noonan, Programming 

Languages: Principles and Paradigms, McGraw-Hill, 
2002

� Additional reference books for the different 
languages are on 4 hour reserve in the 
Engineering Library (along with other useful 
references � complete list is on the web)
� List of reserve books is on the class web page
� ACM library in Sieg may also have some of these 

books

CSE 341, Winter 2003 5

Grading Policy

� Grading scale:
� homework (45%)
� project (15%)
� midterm (15%) 
� final (25%)

� Late policy:
� Each student is granted two late days to use at 

his/her discretion during the quarter (see the web 
page for detailed rule)

� No other late days or extensions except under very 
unusual circumstances

CSE 341, Winter 2003 6

Collaboration Policy
� Collaboration policy: �Gilligan�s Island Rule� (see 

the web page)
� OK (and encouraged) to talk with other students in 

the class about assignments
� Don�t take away any written material from the 

discussion
� Do something mindless for 0.5 hours
� Then do your assignment

� Freedom of Information Rule
� Write the names of your collaborators on any 

assignment
� Cases of academic misconduct will be turned 

over to the Cheating Committee



CSE 341, Winter 2003

2

CSE 341, Winter 2003 7

History of Programming Languages

1955 1960 1965

Fortran

Algol 60

Lisp CPLSnobol

Pre-Fortran: machine code or assembly language

CSE 341, Winter 2003 8

History of
Programming Languages

1965 1970 1975

BCPL

Algol 68

B Prolog

C Unix
rewritten
in C

Simula
Scheme

Smalltalk-72

The first object-oriented language!

CSE 341, Winter 2003 9

History of
Programming Languages

1975 1980 1985

K&R Published
The C Programming

Language

ANSI X3J11
convened to

standardize C

C with Classes
CPre

C++
Objective

C

Smalltalk-80

Icon

CSE 341, Winter 2003 10

History of
Programming Languages

1985 1990 1995

Stroustrup�s
The C++ Programming
Language

ANSI X3J16
Formed for
C++ Standard

Oak
Project

C++ PL
2nd Ed.

Java

Haskell

Perl

Perl5

CSE 341, Winter 2003 11

What is a programming language 
for?

� Instructing machines?
� Communicating among programmers?
� Expressing high level designs?
� Notation for algorithms?
� Tool for experimentation?

Languages are for both humans
and computers!

CSE 341, Winter 2003 12

Effective Use of Programming 
Languages

�Learning the fundamentals of a 
programming language is one thing: 
learning how to design and write 
effective programs in that language 
is something else entirely.�

�Scott Meyers



CSE 341, Winter 2003

3

CSE 341, Winter 2003 13

Why do we care?

� Whorf-Sapir hypothesis for natural languages
� Tradeoffs among languages

� reusability, maintainability
� performance, robustness
� flexibility, dynamicism
� libraries
� aesthetics (i.e., �fun-ness�)

CSE 341, Winter 2003 14

Language classification

� Imperative (Fortran, Algol, C)
� Object-oriented (Smalltalk, Java, C++)
� Functional (�Pure� Scheme/Lisp, Haskell)
� Logic/Constraint (Prolog, CLP(R))

Languages may encourage a certain style even 
if they do not force it on you!

CSE 341, Winter 2003 15

What�s wrong with imperative?
int i = 7;

printf("%d\n",i*2);

� What gets printed?

CSE 341, Winter 2003 16

Assignments make
reasoning difficult!
int i = 7;

i = 3;

printf("%d\n",i*2);

CSE 341, Winter 2003 17

Imperative programming

� Nice for execution, translation� BUT:
� Harder for humans to

understand and reason about
� Harder for sophisticated software tools

� Proving correctness is harder
� Restricts code motion, limits optimizer

(especially important for parallel machines)

CSE 341, Winter 2003 18

Object-Oriented programming

� A kind of imperative programming language
� Metaphor: objects that communicate with each 

other by sending and receiving messages
� Each object is an instance of a class
� Classes come in hierarchies
� Big benefits of OO programming:

� Natural way of decomposing many problems
� Modular
� Good for supporting software reuse (frameworks)



CSE 341, Winter 2003

4

CSE 341, Winter 2003 19

Examples of object-oriented 
languages

� Java
� C++
� Squeak (a Smalltalk dialect)

� Interesting features:
� a pure object-oriented language 
� control structures are handled just by sending messages (no 

special syntax)

CSE 341, Winter 2003 20

The Functional Approach

� In a pure functional language, there are no 
side effects (for example, no assignment 
statements)

� Like functions in mathematics
� Pure model, easy to reason about
� (Arguably) not a good fit for modeling objects 

that change over time

CSE 341, Winter 2003 21

Scheme

� Very simple syntactically
� Still an imperative language, though
� But encourages a functional style
� Can write in a purely functional subset

� we will do this in the beginning
� still has assignment statement

� Dynamically typed

CSE 341, Winter 2003 22

Haskell

� A pure functional language
� Statically-typed
� �Lazy� evaluation

Sample Haskell function definition:

factorial n = product [1..n]

CSE 341, Winter 2003 23

Constraint Logic Programming

� Metaphor: theorem proving and equation solving
� Again, no side effects
� Variables are like those in mathematics

Sample CLP(R) rule:

centigrade_fahrenheit(C,F) :- 1.8*C=F-32.

Use:
?- centigrade_fahrenheit(X,212).


