CSE 341, Winter 2003

CSE 341: Programming Languages

The Team:
Alan Borning, instructor
Andrei Alexandrescu, teaching assistant
Eric Bessette, teaching assistant

“It's on the Web”
www.cs.washington.edu/341

Add yourself to the class listserv
Directions are on the class web page

CSE 341, Winter 2003

Course topics

Three languages:
Java
Scheme (like Lisp ... lots-o-parentheses)

Haskell (a pure functional language with an
interesting type system)

General programming language concepts
Maybe:

perl

squeak

CLP(R) (constraint logic programming)

CSE 341, Winter 2003

Required work

Warmup and moderate-sized program in each
language
Course project of your own choosing

Probably in Java, but we're willing to discuss doing
projects in another language

Can be done in groups
Eclipse and cvs recommended for Java group projects
Midterm, final

Some written homework

CSE 341, Winter 2003

Books

Required text:

Allen Tucker and Robert Noonan, Programming

éggguages: Principles and Paradigms, McGraw-Hill,
Additional reference books for the different
languages are on 4 hour reserve in the
Engineering Library (along with other useful
references — complete list is on the web)

List of reserve books is on the class web page

ACM library in Sieg may also have some of these
books

CSE 341, Winter 2003

Grading Policy

Grading scale:
homework (45%)
project (15%)
midterm (15%)
final (25%)
Late policy:
Each student is granted two late days to use at

his/her discretion during the quarter (see the web
page for detailed rule)

No other late days or extensions except under very
unusual circumstances

CSE 341, Winter 2003

Collaboration Policy

Collaboration policy: “Gilligan’s Island Rule” (see
the web page)
OK (and encouraged) to talk with other students in
the class about assignments

Don't take away any written material from the
discussion

Do something mindless for 0.5 hours
Then do your assignment
Freedom of Information Rule
Write the names of your collaborators on any
assignment
Cases of academic misconduct will be turned
over to the Cheating Committee

CSE 341, Winter 2003

CSE 341, Winter 2003

History of Programming Languages

l Pre-Fortran: machine code or assembly language ‘

History of
Programming Languages

c Unix

BCPL B Prolog rewritten
/in Cc
]

} |
1965 / 1970 /;75
Scheme

Algol 68 s'"“"a Smalltalk-72

l The first object-oriented language!

CSE 341, Winter 2003

Fortran Lisp Snobol CPL
| l | & | J | |
I T T T 1
1955 1960 1965
Algol 60
CSE 341, Winter 2003 7
History of

Programming Languages

K&R Published

ANSI X3J11
The C Programming

convened to

Language standardize C
Smalltalk-80 l

I T T I
1975 /IQBO T A'985
C+

C with Classes , leon

CPre Objective

Cc

CSE 341, Winter 2003

History of
Programming Languages

Stroustrup’s
The C++ Programming C++PL java

Language Oak 2nd Ed.
‘ Perl Project / \
| |

I 1 T 1
1985 / 1990 f 1995
Perl5
ANSI X3J16

Haskell Formed for
C++ Standard

CSE 341, Winter 2003 10

What is a programming language
for?

Instructing machines?
Communicating among programmers?
Expressing high level designs?
Notation for algorithms?

Tool for experimentation?

Languages are for both humans
and computers!

CSE 341, Winter 2003

Effective Use of Programming
Languages

“Learning the fundamentals of a
programming language is one thing:
learning how to design and write
effective programs in that language
is something else entirely.”

—Scott Meyers

CSE 341, Winter 2003 12

CSE 341, Winter 2003

Why do we care?

Whorf-Sapir hypothesis for natural languages
Tradeoffs among languages

reusability, maintainability

performance, robustness

flexibility, dynamicism

libraries

aesthetics (i.e., “fun-ness”)

CSE 341, Winter 2003 13

Language classification

Imperative (Fortran, Algol, C)
Object-oriented (Smalltalk, Java, C++)
Functional ("Pure” Scheme/Lisp, Haskell)
Logic/Constraint (Prolog, CLP(R))

Languages may encourage a certain style even
if they do not force it on you!

CSE 341, Winter 2003 14

What’s wrong with imperative?

int i = 7;

printf ("sd\n",i*2);

What gets printed?

CSE 341, Winter 2003 15

Assignments make
reasoning difficult!
int i = 7;

i= 3;

printf ("$d\n",i*2);

CSE 341, Winter 2003 16

Imperative programming

Nice for execution, translation... BUT:

Harder for humans to

understand and reason about

Harder for sophisticated software tools
Proving correctness is harder

Restricts code motion, limits optimizer
(especially important for parallel machines)

CSE 341, Winter 2003 17

Object-Oriented programming

A kind of imperative programming language
Metaphor: objects that communicate with each
other by sending and receiving messages
Each object is an instance of a class
Classes come in hierarchies
Big benefits of OO programming:
Natural way of decomposing many problems
Modular
Good for supporting software reuse (frameworks)

CSE 341, Winter 2003 18

CSE 341, Winter 2003

Examples of object-oriented
languages

Java
C++

Squeak (a Smalltalk dialect)

Interesting features:
a pure object-oriented language

control structures are handled just by sending messages (no
special syntax)

CSE 341, Winter 2003 19

The Functional Approach

In a pure functional language, there are no
side effects (for example, no assignment
statements)

Like functions in mathematics
Pure model, easy to reason about

(Arguably) not a good fit for modeling objects
that change over time

CSE 341, Winter 2003 20

Scheme

Very simple syntactically
Still an imperative language, though
But encourages a functional style

Can write in a purely functional subset
we will do this in the beginning
still has assignment statement
Dynamically typed

CSE 341, Winter 2003 21

Haskell

A pure functional language
Statically-typed
“Lazy"” evaluation

Sample Haskell function definition:

factorial n = product [1..n]

CSE 341, Winter 2003 2

Constraint Logic Programming

Metaphor: theorem proving and equation solving
Again, no side effects
Variables are like those in mathematics

Sample CLP(R) rule:
centigrade_fahrenheit(C,F) :- 1.8*C=F-32.

Use:
?- centigrade_fahrenheit(X,212).

CSE 341, Winter 2003 23

