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Type Systems and Semantics

This material covered in Chapter 3 of the text

� Syntax versus semantics
� Types
� Formal descriptions of programming language 

semantics
� Operational semantics
� Axiomatic semantics (just skim this section in book)
� Denotational semantics
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Type Systems

� Terms to learn:
� Type
� Type system
� Statically typed language
� Dynamically typed language
� Type error
� Strongly typed
� Weakly typed
� Type safe program
� Type safe language
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Type � Definition
� Type: a set of values and operations on those values
� Java examples of types:

� int
� values = {-231, �, -2, -1, 0, 1, 2, � , 231-1} (231 = 2,147,483,648)
� operations = {+, -, *, �}

� boolean
� values = {false, true}
� operations = {&&, ||, !, �}

� String
� values = {��, �a�, �b�, � , �A�, �, �$�, � �Σ�, � �aa�, �ab�, �}
� operations = {+, trim(), equals(Object x), clone(), �}

� Applet
� values = [all possible applets]
� operations = {init(), paint(Graphics g), clone(), �}
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Type System

� A well-defined system of associating types with 
variables and expressions in the language
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Statically Typed Languages

� Statically typed. Statically typed means that 
the type of every expression can be determined 
at compile time. Java and Haskell are examples 
of statically typed languages. (Scheme is not 
statically typed though.)

� Each variable has a single type throughout the 
lifetime of that variable at runtime.
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Dynamically Typed Languages

� Dynamically typed. The types of expressions 
are not known until runtime.  
� Example languages: Smalltalk, Scheme.

� Book adds this additional part to the definition:
� The type of a variable can change dynamically during 

the execution of the program
� This isn�t a standard part of the definition of 

dynamically typed, but it�s true for all the dynamically 
typed languages that I know of

� This is legal Smalltalk code:              
x ← 3.5.
x ← true.
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Type error

� A type error is a runtime error that occurs when 
we attempt an operation on a value for which 
that operation is not defined.

� Examples:
boolean b, c;
b = c+1;

int i;
boolean b;
i = b;
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Strongly Typed Language

� A language is strongly typed if the language 
guarantees that a value of one type can�t be 
incorrectly used as if it were another type, in 
other words, that all expressions are guaranteed 
to be type consistent. 

� This checking can be done at compile time, at 
run time, or a combination of both

� Java, Smalltalk, Scheme, Haskell, and Ada are 
examples of strongly typed languages.

� Fortran and C are examples of languages that 
aren�t strongly typed.
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Weakly Typed

� Weakly typed. Weakly typed means �not 
strongly typed�. 
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Type Safety

� A program is type safe if it is known to be free of type 
errors.  
� However, the system is allowed to halt at runtime before 

performing an operation that would result in a type error.  
Unfortunately the book is sloppy about this.

� A language is type safe if all legal programs in that 
language are type safe.
� So strongly typed language = type safe language.

� Some languages for systems programming, for example 
Mesa, have a safe subset, although the language as a 
whole is not type safe.
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Tradeoffs

� Generally we want languages to be type safe.
� An exception is a language used for some kinds of 

systems programming, for example writing a garbage 
collector. The �safe subset� approach is one way to deal 
with this problem.

� Advantages of static typing:
� catch errors at compile time
� machine-checkable documentation
� potential for improved efficiency

� Advantages of dynamic typing:
� Flexibility
� rapid prototyping
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Terminology about Types Terminology about Types Terminology about Types Terminology about Types ----
ProblemsProblemsProblemsProblems
� Unfortunately different authors sometimes use different 

definitions for the terms �statically typed� and �strongly 
typed�.

� Statically typed.  The book defines �statically typed� 
to mean that the compiler can statically assign a type to 
every expression � but that type might be wrong.
� By this definition C and Fortran are statically typed.
� Other authors define �statically typed� to also imply �type safe�.

� Strongly typed. The book equate strongly typed and 
type safe (sloppily �)

� For other authors, strongly typed implies type safe and 
statically typed. (Is Scheme strongly typed?)

� To avoid misunderstanding, one can describe a 
language as e.g. �type safe and statically typed�.
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Jay

� Jay is a toy language used in the text to 
illustrate language concepts.  In its original form 
it has no procedures or functions, and no user-
defined types

� Jay is statically and strongly typed
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Type checking in Jay

� Informal summary of type checking in Jay:
� Each variable must have a unique identifier
� Each variable has a type (int or boolean)
� Each variable in an expression must have been 

declared
� Expression has a result type (details on next slide)
� For an assignment, the type of the variable on the 

left must be the same as the type of the expression 
on the right

� For a conditional or loop, the type of the expression 
must be boolean

CSE 341, Winter 2003 15

Result type of an expression

� Let the result type be r.  For an expression expr:
� If expr is a variable, r is the type of the variable
� If expr is a constant, r is the type of the constant
� If expr has an arithmetic operator (+ - * /) at the top 

level, then r is int, and the types of the terms of the 
operator must be int

� If expr has a relational operator at the top level, then 
r is bool, and the types of the terms must be int

� If expr has a boolean operator at the top level, then r 
is bool, and the types of the terms must be bool
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Jay � Type-checking Mini-Exercise 
#1

� Describe how the following Jay program would 
be type-checked.

Void main () {
int j, k;
boolean b;
j = 2;
k = 3;
b = (j<k) && true;
if (b) {
j = j+10;

}
}
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Jay � Type-checking Mini-Exercise 
#2

� Describe how the following Jay program would 
be type-checked.

Void main () {
int j;
boolean b;
j = 2;
b = 3;

}
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Semantic Domains

� The semantic domains for a language are sets 
with well-understood properties, which are 
independently understood.

� Examples:
� N (the set of natural numbers)
� I (the integers)
� B (true, false)

� When we are speaking precisely, we distinguish 
the semantic domains from the types in the 
language itself (for example, int versus I)
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Semantic Domains (2)

� Useful semantic domains for imperative languages:
� environment γ

pairs <variable, memory location>

� memory µ
pairs <location,value>

� locations Ν
natural numbers

� state σ
pairs <variable,value>
(this is a simplified version, that leaves out memory locations)
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Semantic Domains � Example

� Suppose we have variables b, stored at location 
100, and k, stored at location 101.  At a 
particular time, b contains false, and k contains 
3.
� environment γ = {<b,100>, <k,101>}

� memory µ = {<100,false>, <101,3>}

� locations Ν = {100, 101}

� state σ1 = {<b, false >, <k, 3>} 
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Semantic Domains � Assignments

� Suppose we have variables b and k (as on the 
previous slide).  After an assignment k=4 we 
have:
� environment γ = {<b,100>, <k,101>}

� memory µ = {<100,false>, <101,4>}

� locations Ν = {100, 101}

� state σ2 = {<b, false >, <k, 4>} 
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Semantic Domains � Overriding 
Union

σ1 = {<x, 10 >, <y, 20>} 

σ2 = σ1 U {<y, 30>, <z,40>} 

So σ2 = {<x, 10 >, <y, 30>, <z,40>} 
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Jay � Semantic Domains 
Mini-Exercise

� What is the state of the following Jay program initially, 
and after executing each statement?

Void main () {
int j, k;
boolean b;
j = 2;
k = 3;
b = (j<k) && true;
if (b) {
j = j+10;

}
}
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Operational Semantics

� Define the meaning of a program by simulating it with a 
simple abstract machine 

� σ(e) ⇒ v
compute the value v of an expression e in state σ

� Execution rules have the form

premise

conclusion

(If the premise is true, then the conclusion is true)
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Execution Rules - Examples

� Execution rule for addition:

σ(e1) ⇒ v1

σ(e1 + e2) ⇒ v1 + v2

σ(e2) ⇒ v2

So if σ = {<x, 10 >, <y, 20>} then
σ(x + y) ⇒ 30
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Execution Rule for Assignment

� Consider an assignment statement s.target = s.source;

σ(s.source) ⇒ v

σ(s.target = s.source;) ⇒ σ U <s.target,v>}

So if σ = {<x, 10>, <y, 20>} then after
executing x=x+y
σ = {<x, 30>, <y, 20>} 
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Execution Rule for Statement 
Sequences

σ(s1) ⇒ σ1

σ(s1 s2) ⇒ σ2

σ1(s2) ⇒ σ2

So if σ = {<x, 10 >, <y, 20>} 
s1 is x=x+y; 
s2 is y=0;
then
σ(x=x+y; y=0;) ⇒ {<x, 30 >, <y, 0>} 
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Other Execution Rules

� Conditionals
� Loops (note that this is a recursive rule)

(see the text for definitions)
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Operational Semantics 
Mini-Exercise #1

� Use the operational semantics rules to find the final 
state for this program:

Void main () {
int j;
j = 2;
if (j<5) {
j = j+10;

}
}
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Operational Semantics 
Mini-Exercise #2

� Use the operational semantics rules to find the final 
state for this program:

Void main () {
int j;
j = 2;
while (j<5) {
j = j+2;

}
}
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Axiomatic Semantics

� Uses the notion of an assertion: a predicate that describes the state 
of a program at some point in its execution

� Concepts:
� Precondition
� Postcondition

� {P}s{Q}
� This means that if precondition P holds before executing s, then Q will 

hold after executing s (provided s halts)

� Other concept: loop invariant
� Expectation in the 60�s and 70�s: eventually programs would be 

routinely proved correct.
� This obviously hasn�t happened, but the notion of preconditions,

postconditions, and loop invariants are still useful
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Denotational Semantics

� The denotational semantics of a language defines its 
meaning in terms of a �meaning function� M
� As before let σ be a program state.
� Let Σ be the set of all possible program states.
� Let Class be a kind of element in the language (e.g. Assignment, 

Conditional, etc)

� Then:
M: Class × Σ → Σ

� In other words, the meaning function M takes a 
language element and a state σ1 and returns a new 
state σ2
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Meaning of Assignments

M: Assignment × Σ → Σ

M(Assignment a, State σ) = 

σ U {<a.target, M(a.source, σ)>}

Example:
M( j=x , {<x,5>, <j, undef>}) = {<x,5>, <j,5>} 
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Meaning of Expressions

M: Expression × State → Value
M(Expression e, State σ)

= e                   if e is a Value
= σ(e)               if e is a Variable
= M(x1,σ) + M(x2,σ)     if e = x1 + x2

= M(x1,σ) - M(x2,σ)  if e = x1 - x2
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More on Denotational Semantics 
(Optional, Extra Material)
� In most papers on denotational semantics, the meaning 

function M is written using double brackets:
[[e]] σ

rather than 
M(e,σ)

� Strictly speaking, the meaning function applied to a 
constant takes an element of the language into a 
semantic domain � these two domains are different:

[[12]] σ = 12

� There is a copy of a tutorial on denotational semantics 
by R.D. Tennent linked from the 341 website for those 
who would like to learn more.


