
CSE 341, Winter 2003

1

CSE 341, Winter 2003 1

Type Systems and Semantics

This material covered in Chapter 3 of the text

� Syntax versus semantics
� Types
� Formal descriptions of programming language

semantics
� Operational semantics
� Axiomatic semantics (just skim this section in book)
� Denotational semantics

CSE 341, Winter 2003 2

Type Systems

� Terms to learn:
� Type
� Type system
� Statically typed language
� Dynamically typed language
� Type error
� Strongly typed
� Weakly typed
� Type safe program
� Type safe language

CSE 341, Winter 2003 3

Type � Definition
� Type: a set of values and operations on those values
� Java examples of types:

� int
� values = {-231, �, -2, -1, 0, 1, 2, � , 231-1} (231 = 2,147,483,648)
� operations = {+, -, *, �}

� boolean
� values = {false, true}
� operations = {&&, ||, !, �}

� String
� values = {��, �a�, �b�, � , �A�, �, �$�, � �Σ�, � �aa�, �ab�, �}
� operations = {+, trim(), equals(Object x), clone(), �}

� Applet
� values = [all possible applets]
� operations = {init(), paint(Graphics g), clone(), �}

CSE 341, Winter 2003 4

Type System

� A well-defined system of associating types with
variables and expressions in the language

CSE 341, Winter 2003 5

Statically Typed Languages

� Statically typed. Statically typed means that
the type of every expression can be determined
at compile time. Java and Haskell are examples
of statically typed languages. (Scheme is not
statically typed though.)

� Each variable has a single type throughout the
lifetime of that variable at runtime.

CSE 341, Winter 2003 6

Dynamically Typed Languages

� Dynamically typed. The types of expressions
are not known until runtime.
� Example languages: Smalltalk, Scheme.

� Book adds this additional part to the definition:
� The type of a variable can change dynamically during

the execution of the program
� This isn�t a standard part of the definition of

dynamically typed, but it�s true for all the dynamically
typed languages that I know of

� This is legal Smalltalk code:
x ← 3.5.
x ← true.

CSE 341, Winter 2003

2

CSE 341, Winter 2003 7

Type error

� A type error is a runtime error that occurs when
we attempt an operation on a value for which
that operation is not defined.

� Examples:
boolean b, c;
b = c+1;

int i;
boolean b;
i = b;

CSE 341, Winter 2003 8

Strongly Typed Language

� A language is strongly typed if the language
guarantees that a value of one type can�t be
incorrectly used as if it were another type, in
other words, that all expressions are guaranteed
to be type consistent.

� This checking can be done at compile time, at
run time, or a combination of both

� Java, Smalltalk, Scheme, Haskell, and Ada are
examples of strongly typed languages.

� Fortran and C are examples of languages that
aren�t strongly typed.

CSE 341, Winter 2003 9

Weakly Typed

� Weakly typed. Weakly typed means �not
strongly typed�.

CSE 341, Winter 2003 10

Type Safety

� A program is type safe if it is known to be free of type
errors.
� However, the system is allowed to halt at runtime before

performing an operation that would result in a type error.
Unfortunately the book is sloppy about this.

� A language is type safe if all legal programs in that
language are type safe.
� So strongly typed language = type safe language.

� Some languages for systems programming, for example
Mesa, have a safe subset, although the language as a
whole is not type safe.

CSE 341, Winter 2003 11

Tradeoffs

� Generally we want languages to be type safe.
� An exception is a language used for some kinds of

systems programming, for example writing a garbage
collector. The �safe subset� approach is one way to deal
with this problem.

� Advantages of static typing:
� catch errors at compile time
� machine-checkable documentation
� potential for improved efficiency

� Advantages of dynamic typing:
� Flexibility
� rapid prototyping

CSE 341, Winter 2003 12

Terminology about Types Terminology about Types Terminology about Types Terminology about Types ----
ProblemsProblemsProblemsProblems
� Unfortunately different authors sometimes use different

definitions for the terms �statically typed� and �strongly
typed�.

� Statically typed. The book defines �statically typed�
to mean that the compiler can statically assign a type to
every expression � but that type might be wrong.
� By this definition C and Fortran are statically typed.
� Other authors define �statically typed� to also imply �type safe�.

� Strongly typed. The book equate strongly typed and
type safe (sloppily �)

� For other authors, strongly typed implies type safe and
statically typed. (Is Scheme strongly typed?)

� To avoid misunderstanding, one can describe a
language as e.g. �type safe and statically typed�.

CSE 341, Winter 2003

3

CSE 341, Winter 2003 13

Jay

� Jay is a toy language used in the text to
illustrate language concepts. In its original form
it has no procedures or functions, and no user-
defined types

� Jay is statically and strongly typed

CSE 341, Winter 2003 14

Type checking in Jay

� Informal summary of type checking in Jay:
� Each variable must have a unique identifier
� Each variable has a type (int or boolean)
� Each variable in an expression must have been

declared
� Expression has a result type (details on next slide)
� For an assignment, the type of the variable on the

left must be the same as the type of the expression
on the right

� For a conditional or loop, the type of the expression
must be boolean

CSE 341, Winter 2003 15

Result type of an expression

� Let the result type be r. For an expression expr:
� If expr is a variable, r is the type of the variable
� If expr is a constant, r is the type of the constant
� If expr has an arithmetic operator (+ - * /) at the top

level, then r is int, and the types of the terms of the
operator must be int

� If expr has a relational operator at the top level, then
r is bool, and the types of the terms must be int

� If expr has a boolean operator at the top level, then r
is bool, and the types of the terms must be bool

CSE 341, Winter 2003 16

Jay � Type-checking Mini-Exercise
#1

� Describe how the following Jay program would
be type-checked.

Void main () {
int j, k;
boolean b;
j = 2;
k = 3;
b = (j<k) && true;
if (b) {
j = j+10;

}
}

CSE 341, Winter 2003 17

Jay � Type-checking Mini-Exercise
#2

� Describe how the following Jay program would
be type-checked.

Void main () {
int j;
boolean b;
j = 2;
b = 3;

}

CSE 341, Winter 2003 18

Semantic Domains

� The semantic domains for a language are sets
with well-understood properties, which are
independently understood.

� Examples:
� N (the set of natural numbers)
� I (the integers)
� B (true, false)

� When we are speaking precisely, we distinguish
the semantic domains from the types in the
language itself (for example, int versus I)

CSE 341, Winter 2003

4

CSE 341, Winter 2003 19

Semantic Domains (2)

� Useful semantic domains for imperative languages:
� environment γ

pairs <variable, memory location>

� memory µ
pairs <location,value>

� locations Ν
natural numbers

� state σ
pairs <variable,value>
(this is a simplified version, that leaves out memory locations)

CSE 341, Winter 2003 20

Semantic Domains � Example

� Suppose we have variables b, stored at location
100, and k, stored at location 101. At a
particular time, b contains false, and k contains
3.
� environment γ = {<b,100>, <k,101>}

� memory µ = {<100,false>, <101,3>}

� locations Ν = {100, 101}

� state σ1 = {<b, false >, <k, 3>}

CSE 341, Winter 2003 21

Semantic Domains � Assignments

� Suppose we have variables b and k (as on the
previous slide). After an assignment k=4 we
have:
� environment γ = {<b,100>, <k,101>}

� memory µ = {<100,false>, <101,4>}

� locations Ν = {100, 101}

� state σ2 = {<b, false >, <k, 4>}

CSE 341, Winter 2003 22

Semantic Domains � Overriding
Union

σ1 = {<x, 10 >, <y, 20>}

σ2 = σ1 U {<y, 30>, <z,40>}

So σ2 = {<x, 10 >, <y, 30>, <z,40>}

CSE 341, Winter 2003 23

Jay � Semantic Domains
Mini-Exercise

� What is the state of the following Jay program initially,
and after executing each statement?

Void main () {
int j, k;
boolean b;
j = 2;
k = 3;
b = (j<k) && true;
if (b) {
j = j+10;

}
}

CSE 341, Winter 2003 24

Operational Semantics

� Define the meaning of a program by simulating it with a
simple abstract machine

� σ(e) ⇒ v
compute the value v of an expression e in state σ

� Execution rules have the form

premise

conclusion

(If the premise is true, then the conclusion is true)

CSE 341, Winter 2003

5

CSE 341, Winter 2003 25

Execution Rules - Examples

� Execution rule for addition:

σ(e1) ⇒ v1

σ(e1 + e2) ⇒ v1 + v2

σ(e2) ⇒ v2

So if σ = {<x, 10 >, <y, 20>} then
σ(x + y) ⇒ 30

CSE 341, Winter 2003 26

Execution Rule for Assignment

� Consider an assignment statement s.target = s.source;

σ(s.source) ⇒ v

σ(s.target = s.source;) ⇒ σ U <s.target,v>}

So if σ = {<x, 10>, <y, 20>} then after
executing x=x+y
σ = {<x, 30>, <y, 20>}

CSE 341, Winter 2003 27

Execution Rule for Statement
Sequences

σ(s1) ⇒ σ1

σ(s1 s2) ⇒ σ2

σ1(s2) ⇒ σ2

So if σ = {<x, 10 >, <y, 20>}
s1 is x=x+y;
s2 is y=0;
then
σ(x=x+y; y=0;) ⇒ {<x, 30 >, <y, 0>}

CSE 341, Winter 2003 28

Other Execution Rules

� Conditionals
� Loops (note that this is a recursive rule)

(see the text for definitions)

CSE 341, Winter 2003 29

Operational Semantics
Mini-Exercise #1

� Use the operational semantics rules to find the final
state for this program:

Void main () {
int j;
j = 2;
if (j<5) {
j = j+10;

}
}

CSE 341, Winter 2003 30

Operational Semantics
Mini-Exercise #2

� Use the operational semantics rules to find the final
state for this program:

Void main () {
int j;
j = 2;
while (j<5) {
j = j+2;

}
}

CSE 341, Winter 2003

6

CSE 341, Winter 2003 31

Axiomatic Semantics

� Uses the notion of an assertion: a predicate that describes the state
of a program at some point in its execution

� Concepts:
� Precondition
� Postcondition

� {P}s{Q}
� This means that if precondition P holds before executing s, then Q will

hold after executing s (provided s halts)

� Other concept: loop invariant
� Expectation in the 60�s and 70�s: eventually programs would be

routinely proved correct.
� This obviously hasn�t happened, but the notion of preconditions,

postconditions, and loop invariants are still useful

CSE 341, Winter 2003 32

Denotational Semantics

� The denotational semantics of a language defines its
meaning in terms of a �meaning function� M
� As before let σ be a program state.
� Let Σ be the set of all possible program states.
� Let Class be a kind of element in the language (e.g. Assignment,

Conditional, etc)

� Then:
M: Class × Σ → Σ

� In other words, the meaning function M takes a
language element and a state σ1 and returns a new
state σ2

CSE 341, Winter 2003 33

Meaning of Assignments

M: Assignment × Σ → Σ

M(Assignment a, State σ) =

σ U {<a.target, M(a.source, σ)>}

Example:
M(j=x , {<x,5>, <j, undef>}) = {<x,5>, <j,5>}

CSE 341, Winter 2003 34

Meaning of Expressions

M: Expression × State → Value
M(Expression e, State σ)

= e if e is a Value
= σ(e) if e is a Variable
= M(x1,σ) + M(x2,σ) if e = x1 + x2

= M(x1,σ) - M(x2,σ) if e = x1 - x2

CSE 341, Winter 2003 35

More on Denotational Semantics
(Optional, Extra Material)
� In most papers on denotational semantics, the meaning

function M is written using double brackets:
[[e]] σ

rather than
M(e,σ)

� Strictly speaking, the meaning function applied to a
constant takes an element of the language into a
semantic domain � these two domains are different:

[[12]] σ = 12

� There is a copy of a tutorial on denotational semantics
by R.D. Tennent linked from the 341 website for those
who would like to learn more.

