
Name:

CSE 341, Fall 2004, Final Examination
16 December 2004

Please do not turn the page until everyone is ready.

Rules:

• The exam is closed-book, closed-note, except for one side of one 8.5x11in piece of paper.

• Please stop promptly at 10:20.

• You can rip apart the pages, but please write your name on each page.

• There are a total of 6 questions (each with multiple parts) and 85 points. The questions are worth
between 12 and 15 points.

• When writing code, style matters, but don’t worry about indentation.

Advice:

• Read questions carefully. Understand a question before you start writing.

• Write down thoughts and intermediate steps so you can get partial credit.

• The questions are not necessarily in order of difficulty. Skip around.

• If you have questions, ask.

• Relax. You are here to learn.

1

Name:

1. For each of the following parts of Scheme programs, decide if the function bound to f is pure, i.e., it
has no visible effects and it always returns the same answer (or produces the same error) given the
same argument. (Note: We are asking about the function that is (initially) bound to f, so it doesn’t
matter if the variable f is mutated.)
Briefly explain your answers.

(a) (3 points)

(define f
(let ([y 3])
(lambda (x)
(+ x y))))

(b) (3 points)

(define y 3)
(define f
(lambda (x)
(+ x y)))

(c) (3 points)

(define f
(lambda (x)
(begin (set! x (+ x 3))

x)))

(d) (3 points)

(define f
(lambda (x)
(begin (set-cdr! x (+ (cdr x) 3))

(cdr x))))

(e) (3 points)

(define f
(lambda (x)
(begin (set-cdr! (cons (car x) (cdr x)) (+ (cdr x) 3))

(cdr x))))

Solution:

(a) Pure: The function always adds 3 to its argument because nothing it uses from its environment
can ever be mutated.

(b) Not pure if subsequent code mutates y.

(c) Pure: The mutation is only to a local variable; the function always adds 3 to its argument.

(d) Not pure: The function mutates the pair it is passed; this effect is visible to callers.

(e) Pure: The mutation is to a fresh object that is not returned; the functions always returns the cdr
of its argument.

2

Name:

2. Consider this definition for ribit. (It is similar to frog from homework 5, but functions are anonymous
and take one argument (not a list), there are no lists, and there are no exceptions.)

(define-struct var (str)) ; variables
(define-struct int (num)) ; constants
(define-struct add (e1 e2)) ; addition (like e1 + e2 in ML)
(define-struct alet (str e1 e2)) ; let-binding (like let str = e1 in e2 in ML)
(define-struct fun (str e1)) ; anonymous function (like fn str=>e1 in ML)
(define-struct app (e1 e2)) ; application (like e1(e2) in ML)
; a ribit expression is made from one of the 6 constructors defined above
; semantics is lexically scoped functions, like ML, Scheme, and frog

You may assume that fields named str hold Scheme strings, fields named num hold Scheme integers,
and fields named e1 or e2 hold ribit expressions.

(a) (7 points) Write a Scheme function no-ribit-negs that takes a Ribit program p and returns #t
if p contains no negative constants and #f otherwise. (Do not evaluate the program; just compute
whether it contains a negative constant.)

(b) (4 points) Suppose we want to forbid ribit programs that evaluate to negative constants. (A
run-time failure or another final value is fine.) Is no-ribit-negs a sound compile-time check? Is
no-ribit-negs a complete compile-time check? Explain.

(c) (4 points) Suppose we want to forbid Scheme programs that evaluate to negative constants and
no-scheme-negs determines if a Scheme progrm p has no negative constants. Is no-scheme-negs
a sound compile-time check? Is no-scheme-negs a complete compile-time check? Explain.

Solution:

(a) (define (no-ribit-negs p)
(cond [(var? p) #t]

[(int? p) (>= (int-num p) 0)]
[(add? p) (and (no-ribit-negs (add-e1 p))

(no-ribit-negs (add-e2 p)))]
[(alet? p) (and (no-ribit-negs (alet-e1 p))

(no-ribit-negs (alet-e2 p)))]
[(fun? p) (and (no-ribit-negs (fun-e1 p)))]
[(app? p) (and (no-ribit-negs (app-e1 p))

(no-ribit-negs (app-e2 p)))]))

(b) It is sound: The only numbers in a ribit program can be constants and the result of adding ribit
numbers. So if none of the constants are negative, no number in the program can be negative,
so the final result cannot be negative. It is not complete: For example, it rejects (make-add
(make-int -2) (make-int 3)), but this program does not evaluate to a negative constant.

(c) It is not sound: For example, it accepts (- 3 4), but this program evaluates to a negative
constant. It is not complete: For example it rejects (lambda (x) -3), but this program evaluates
to a function.

3

Name:

3. (a) (6 points) Define a Smalltalk class CounterBlock with one method newCounter, which returns
a block taking no arguments. When sent the value message, the block should return a 3-element
array:
• First element: how many times that block has been sent value.
• Second element: how many times any block created by the same instance of CounterBlock

has been sent value.
• Third element: how many times any block created by any instance of CounterBlock has

been sent value.
Remember Object accepts the message
subclass:instanceVariableNames:classVariableNames:poolDictionaries:category:
Just assume your newCounter method is “in CounterBlock”.

(b) (6 points) Suppose SubCounterBlock is some subclass of CounterBlock.
Determine if each claim below is “always true”, “sometimes true”, or “never true”. Explain.
Assume x := (((CounterBlock new) newCounter) value) at: 3.

i. SubCounterBlock does not override newCounter and
x does include sends to blocks created by instances of SubCounterBlock.

ii. SubCounterBlock does not override newCounter and
x does not include sends to blocks created by instances of SubCounterBlock.

iii. SubCounterBlock does override newCounter and
x does include sends to blocks created by instances of SubCounterBlock.

iv. SubCounterBlock does override newCounter and
x does not include sends to blocks created by instances of SubCounterBlock.

(c) (3 points) After the following code executes, can any objects that it allocates be garbage-
collected? Explain.
x := CounterBlock new. y := x newCounter. x := nil

Solution:

(a) Object subclass: #CounterBlock
instanceVariableNames: ’c2’
classVariableNames: ’C1’
poolDictionaries: ’’ category: ’final’

newCounter
|c3|
C1 ifNil: [C1 := 0].
c2 ifNil: [c2 := 0].
c3 := 0.
^[C1 := C1 + 1. c2 := c2 + 1. c3 := c3 + 1. {c3. c2. C1}]

(b) i. “always true”: The behavior of newCounter will not change; it is not overridden and it does
not call any overridden methods.

ii. “never true”: Same reason as previous part.
iii. “sometimes true”: It depends what the overriding is. In the extreme, it could just be super

newCounter.
iv. “sometimes true”: It depends what the overriding is. If it is something like 0, then the counts

won’t be adjusted.
(c) No. The block bound to y is still reachable via y. The Counterblock instance (in particular, its

field that holds a counter) is still reachable from the block’s environment, so it cannot be collected
even though x is nil. Put another way, if we collected the Counterblock instance, a subsequent
y value would access reclaimed memory.

4

Name:

4. Suppose Smalltalk had multiple inheritance, with the following restriction: Resolving a message to a
method must never be ambiguous. That is, if message m is sent to an instance of class C, then we get
the same method by starting at C and following any sequence of superclass references. The Smalltalk
implementation must reject any operation that makes this “all paths are the same” property false.

(a) (9 points) For each of these operations, explain how the operation could make the “all paths are
the same” property false. (Assume it was true to begin with.)

• A new class C is created with superclasses A and B.
• A method m is added to a class D.
• A method m is removed from a class E.

(b) (4 points) Suppose classes F and G both have a method m and no subclasses. You want to create
a class H with superclasses F and G, but at no point can you violate the “all paths are the same”
property. Describe a sequence of six operations such that:

• None of the operations are rejected.
• After the sequence, H exists and instances of F and G behave just as they did before.

Solution:

(a) • If A and B both define methods m, then (C new) m is ambiguous.
• If D has a subclass S1 that has another superclass S2 and S1 does not define m, then (S1 new)
m is ambiguous.

• If E has supertypes S1 and S2 and at least defines m, then (E new) m is ambiguous.

(b) • Remove m from F.
• Remove m from G.
• Create H.
• Add a method m to H.
• Add the method m removed from F back to F.
• Add the method m removed from G back to G.

5

Name:

5. Consider these Java classes, but do not assume these are the only classes in the program.

class D {
void m(A x) { System.out.println("A"); }
void m(B x) { System.out.println("B"); }
void m(C x) { System.out.println("C"); }

}
class A {

void f() { (new D()).m(this); }
void g(D d) { d.m(this); }

}
class B extends A {}
class C extends B {

void f() { super.f(); (new D()).m(this); }
}

(a) (6 points) Recall Java has static overloading.

i. What does (new A()).f() print?
ii. What does (new B()).f() print?
iii. What does (new C()).f() print?
iv. Does (new A()).g(e) print the same thing for any possible e (that type-checks)? If so, what

does it print? If not, why not?

(b) (6 points) Suppose Java had multimethods and not static overloading. In this situation:

i. What does (new A()).f() print?
ii. What does (new B()).f() print?
iii. What does (new C()).f() print?
iv. Does (new A()).g(e) print the same thing for any possible e (that type-checks)? If so, what

does it print? If not, why not?

Solution:

(a) i. A
ii. A
iii. A

C
iv. No, we might pass a subclass of D which could override the method m that takes an A.

(b) i. A
ii. B
iii. C

C
iv. (same as part (a)) No, we might pass a subclass of D which could override the method m that

takes an A.

6

Name:

6. Suppose Java did not allow subsumption for array types. Consider this Java method, which under our
assumption can never raise an exception:

final static void copy(C[] arr1, C[] arr2) {
if(arr1 != null && arr2 != null) {
for(int i=0; i < arr1.length && i < arr2.length; i++)
arr1[i] = arr2[i];

}
}

Suppose C extends B and D extends C.

In answering the questions below, remember that you know the implementation of copy and it cannot
be overridden.

(a) (3 points) Is it sound to type-check a program as though copy had type void copy(B[],C[])?
(It is not sound if it could lead to accepting a program that could have a message-not-understood
error.)

(b) (3 points) Is it sound to type-check a program as though copy had type void copy(C[],B[])?

(c) (3 points) Is it sound to type-check a program as though copy had type void copy(D[],C[])?

(d) (3 points) Is it sound to type-check a program as though copy had type void copy(C[],D[])?

(e) (3 points) If Java had bounded quantification, what is the most general (but sound) type we
could give to copy?

Solution:

(a) Yes, sound: We only write to arr1, so if we pass in an array of B objects, we will write C objects
into it, but C is a subtype of B.

(b) No, unsound: It would allow us to write a B object into an array of C objects. If we then assumed
an array-element was a C and not a B we could get a message-not-understood error.

(c) No, unsound: It would allow us to write a C object into an array of D objects. If we then assumed
an array-element was a D and not a C we could get a message-not-understood error.

(d) Yes, sound: We only read from arr2, so if we pass in an array of D objects, we can treat each
element we read as a C because D is a subtype of C.

(e) forall ’a1 forall ’a2 where ’a2 <: ’a1. final static void copy(’a1, ’a2);

7

